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Electroacoustic-Analogous Circuit Models
for Filled Enclosures*

W. MARSHALL LEACH, JR.
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The thermodynamic and mechanical effects of filling in a closed-box loudspeaker
enclosure are studied. It is shown that the acoustical-analogous circuit that models the
increase in compliance due to the thermodynamic effects is a capacitor in parallel with
a series resistor and capacitor, while the acoustical-analogous circuit that models the
mechanical parameters of the filling material consists of an inductor in series with the
parallel combination of a resistor and a series inductor, resistor, and capacitor.

0 INTRODUCTION

The effects of a filling material such as fiberglass in
a closed-box loudspeaker baffle are well known [1]~
[3]. The major ones are to increase the compliance of
the enclosed air as well as the losses and the acoustic
mass loading of the air. In the analogous circuits for
closed-box systems, these effects are normally modeled
by adjusting the elements in the circuits for the unfilled
box by “rules of thumb” to account for the effects of
the filling [3]. In this way, the need to model the effects
of the filling analytically is avoided. Although this
approach normally yields acceptable design results, it
makes it difficult to make theoretical comparisons.

This paper presents an analytical study of the low-
frequency effects of filling materials in an enclosure.
The approach is to review first the development of the
electroacoustic-analogous circuit model for an unfilled
enclosure. The circuit is then modified to account for
the effects of a filling. The increase in compliance is
modeled by investigating the thermodynamic effects
of the filling on the air compression and rarefaction in
the enclosure. The increases in mass loading and en-
closure losses are modeled by investigating the me-
chanical properties of the filling fibers.

1 THE ANALOGOUS CIRCUIT MODEL OF AN
UNFILLED BOX

Let Z,p denote the acoustic impedance of the air
load on the rear of a loudspeaker diaphragm mounted
in one wall of a sealed box. The diaphragm is modeled
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as a flat piston of area Spp. The box wall area is denoted
by Sg. Fig. 1(a) illustrates the case where the piston
occupies the entire area of the box wall, that is, Sp =
Sg. It is assumed that a plane wave is radiated into the
box when the piston vibrates. The acoustic impedance
of the air in the box is that of a piston in a closed tube.
It is given by [1]

Zap = =% cot (kd) (1)
Sp

where k = w/c and d is the depth of the box. At low
frequencies, such that d < A\/7, a two-term approxi-
mation to the cotangent function can be made to obtain
the approximate relation

Zpg = + joM,p )

AB

where Capg and M, are given by

V
Cap = _132 (3)
PoC
pod
Mpg = ——— 4
T 4

V being the internal box volume, Vg = Sgd.

The analogous circuit for Zg consists of an acoustic
compliance (capacitor) C,p in series with an acoustic
mass (inductor) M sg. The compliance Cp is a function
of the volume of the box and is independent of the box
geometry. It follows, therefore, that if the piston area
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of the driver is changed so that it is less than the area
of the box wall in which it is installed, the equation
for the acoustic compliance C,p will remain unchanged
[1}.

The acoustic mass M sp is a function of the ratio of
the box depth d to the box wall area Sg. This is not
independent of box geometry. In addition, the expres-
sion for M g is correct only when the diaphragm oc-
cupies the full area of the box wall. A modification of
the expression is sought so that it will be valid when
Sp < Sp. Consider Fig. 1(b), where the piston diaphragm
area Sp is shown to be very much smaller than the box
wall area Sg. The figure illustrates a spherical wave
radiated into the box. If Sp is made small enough com-
pared to Sy, the acoustic mass M g must approach that
for a piston in an infinite baffle. Thus two “calibration
points” are known. If Sp = S, M, is given by Eq.
(4). If Sp << Sg, M ,p must appreach the infinite haffle
value [1] given by My, = 8p0/(3'n'2 V Sp/).

For lack of a better model, it is assumed that Mg
varies linearly with the ratio Sp/Sg between the two
calibration points. Therefore the equation for M ,p is
taken to be

d (S 8
MAB_pL<_D>+ Po

"~ 385 \Sg 3n\/Spim
Sp Po
X|1—-——=—) =8B . 5
( SB) A AT ®)

This equation defines the mass-loading factor B for the
rear of the diaphragm.! It is straightforward to solve
for B to obtain

_d Vm S_) i( _@>
B_\/E 3 <SB + 1 . (6)

It follows that B is a function of the box geometry.
There are two sets of ratios for box dimensions that
are used to minimize the effects of standing waves
inside the box at the higher frequencies where electro-
acoustic approximations break down {4]. These ratios
are 0.8 X 1.0 X 1.25and 0.6 X 1.0 X 1.6. Itis assumed

"In[1, p. 217] Beranek defines the mass loading factor B
(sometimes called the Beranek B factor), but he never gives
an analytical expression for it. His Fig. 8.6 gives a graph
for B with no explanation of how it was obtained. It is believed
that the present approach is the one used by Beranek to generate
the graph.
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(a)

Fig. 1. Piston radiator installed in one wall of closed-box
baffle. (a) Piston area is equal to box wall area. Wave radiated
into box is plane wave. (b) Piston area is much smaller than
box wall area. Wave radiated into box is spherical wave.
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that the driver is mounted in the box panel having the
larger dimensions so that the first number in each set
of ratios represents the relative depth of the box. In
this case, the quotient d/VSg in Eq. (6) for B has the
value 0.8/V1.0 X 1.25 = 0.716 for the first set of
ratios and 0.6/V 1.0 X 1.6 = 0.474 for the second set.
Fig. 2 gives the variation of B with Sp/Sg for these
two ratios.

2 MODELING THE THERMODYNAMIC EFFECTS
OF FILLING

When filling material is added to an enclosure, the
effective acoustic volume of the box is increased. This
can be explained by comparing the velocity of sound
in filling material such as fiberglass to that in air. The
filling slows down the wave propagation. If the filling
is in ax enclosure, this wou!d cause the time required
for a sound wave that emanates from the rear of a
loudspeaker diaphragm to be reflected from an internal
surface of the box to be greater in a filled box than in
an unfilled box. Therefore the box “looks” bigger to
the driver.

In free air a sound wave is modeled as an adiabatic
process [1] for which the velocity of sound is given by
¢ = VyPy/po, where vy = 1.4 is the ratio of the specific
heat of air at constant pressure to the specific heat at
constant volume, pg is the air density, and Py is the
static air pressure. To a first approximation, an acoustic
wave in a filled medium is modeled as an isothermal
process for which ¢ = V Py/py. This equation can be
predicted from the one for an adiabatic process by con-
sidering <y to be variable; it has the value y = 1 for an

0.01 S./S 1

0.01 S./S 1

/5B

(b)
Fig. 2. Plot of mass-loading factor B as a function of ratio
of diaphragm area to box wall area Sp/Sg. (a) Ratio of box
dimensions 0.8 X 1.0 X 1.25. (b) Ratio of box dimensions
0.6 X 1.0 X 1.6. In each case, the diaphragm is mounted in
the box wall having the largest area.
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isothermal process. From Eq. (3) the box compliance
can be written as a function of v,

Ve _ VB

Cap = —5 = .
poc®  ¥Po

M

This equation can be interpreted as saying that the ef-
fective volume of the box varies inversely with y. It
thus follows that a filled box can appear bigger than
an unfilled box by the factor of 1.4, or by 40%.

In practice, the volume increase due to filling is never
as large as 40%. To investigate this further, the ther-
modynamics of the air compression in a filled box must
be studied. Consider the system illustrated in Fig. 3(a).
Let the total volume Vg inside the vessel be written
Vs = V, + Vi, where V, is that part of the volume that
is occupied by air and V¢ that occupied by filling. It is
assumed initially that the air pressure is Py and that
the air and the filling in the vessel are in thermal equi-
librium at a temperature Ty. Let a unit step of force
AF be applied to the piston in the figure. This will
cause the volume of air to be compressed adiabatically
to V, — AVy, the air pressure to increase to Py + AP,
and the air temperature to increase to To + AT;. Because
the air is now at a higher temperature than the filling,
the filling will be heated, which in turn will cause the
air temperature to drop. As this occurs, the pressure
in the vessel must remain constant because of the con-
stant applied force. Thus as the temperature of the air
drops, the piston will move in and the air volume will
decrease at a constant pressure to a final value V, —
AV, — AV,, while the air temperature drops to a final
equilibrium value Ty + AT; — AT,. This must also be
the final equilibrium temperature of the filling.

Fig. 3(b) illustrates the pressure versus volume for
the air in the vessel during the processes described.
The initial point is denoted by A on the diagram. When
the force AF is applied, the adiabatic compression will
cause a transition to point B and the piston will do
work on the air AW,. As the filling causes the air to
cool, the constant-pressure compression will cause a
transition to point C, and the piston will do work on
the air AW,. During the adiabatic compression, the
work done on the air must equal the increase in internal
energy. This gives the relation

1
AW] = PoAVl + 5 APAVl

= P()AVI = MaCVATl (8)

where M, is the mass of the air and c, is the specific
heat of the air at constant volume. During the constant-
pressure compression, the work done on the air must
equal the increase in internal energy (which is negative)
plus the heat lost to the filling. This gives the relation

1l

AWZ (Po + AP)AVz = P()AVZ

_MaCVATz + Mfo(ATl - ATz) (9)
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where M; is the total mass of the filling and c; is the
specific heat of the filling material.

Finally, the general gas law PV = M(c, — c\)T =
Mc,(y — 1)T, where M is the gas mass, c, is the specific
heat at constant pressure, and y = cp/cy, can be used
to relate AV, to AT, to obtain

PoAV, = M,c(y — DAT, . (10)
The preceding three equations can be solved simulta-
neously to relate AV, to AV;. The desired relation is

AV,
AV,

v —1
= . 11
1 + yM,c,/M¢ce (n

This result can be used to solve for the apparent
increase in the volume of the air caused by the filling.
For an adiabatic compression, a small change in pressure
is related to a small change in volume by the relation
AP = yPAV/V. Thus if the same change in pressure
is to result from the compression of an unfilled volume
Va, by AV, as for an unfilled volume V5 by AV, +
AV,, AP must satisfy

AV AV, + AV
AP = yPy—L = ypy —1 =72 (12)
Va Vap
This can be solved for V,p/V, to obtain
\% AV. -1
L R NGE)
V. AV, 1 + vy M,c/Mic

To put this equation into the final desired form, we
write V, = Vg — Vi = V(1 — V¢/Vg), M, = poV, =
poVe(l — V¢/Vg), and My = p;Vy, where pg is the
density of the air and py is the bulk density of the filling
material. We can solve for V5 as a function of Vg to
obtain

+ v - 1 ]
1L+ vy (Ve/Vg — 1) pocu/psce]
(14)

This is the desired relation. It gives the apparent volume
Vap of air in a filled box as a function of the box
volume Vg. We note that V,g = Vy if V; = 0 and that
Vap = 0 if V¢ = Vg. These limiting values certainly
agree with intuitive reasoning. As a numerical example,
the expression will be evaluated for uncompressed fi-
berglass of the type that is used in home construction
for which Vy/V; = 400. We have py = 1.18 kg/m3,
pr = 2400 kg/m3, v=14,c¢, =717 Ji(kg - °C), and
¢ce = 670 J/(kg - °C). Evaluation of Eq. (14) yields
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Vap = 1.31Vg. Therefore we would expect that un-
compressed fiberglass would increase the apparent
volume of a box by about 31%.

The time required for the transition from point B to
point C in Fig. 3(b) has been neglected. It is shown in
the Appendix that the cooling effect of the filling can
be modeled by an exponential time function. It follows
that the transition from point B to point C can be modeled
by an exponential time function so that the apparent
volume of air in the box as a function of time can be
written

Vas(t) = Vp <1 - E)
« [1 s

where 17 is the time constant and it is assumed that the
applied unit step of force occurs at the time ¢+ = 0. It
can be seen from this equation that the apparent volume
of air has the initial value at + = 0 of Vg(1 — V;/Vp)
and a final value at +—>¢< given by Eq. (14). As shown
by Eq. (7), the acoustic compliance of the air in the
enclosure is proportional to the volume of air, where
the constant of proportionality is 1/yPy = 1/pgc?. It
is desired to solve for the analogous circuit that Eq.
(15) predicts. To do this, Vag(?) is Laplace transformed
to obtain a function V,p(s), where s is the complex
frequency. This is a transfer function representing the
step response of the volume, which is converted to a
transfer function representing the impulse response of
the volume by multiplying by s. The transfer function
representing the acoustical admittance Y (s) of the vol-
ume is then obtained by multiplying by s/yPy = s/

poC2.

When the procedure described for solving for Y(s)
is performed, it follows that the acoustical admittance
of the volume is given by

v 14
Y(s) = —2 (1 - —f>
Poc VB

-1
X |s + b l .
I + v (Vg/Vy — 1) pocy/pscs 1 + T¢s
(16)

vy — 1
(
1 + v (Va/Vy — 1) pocv/pscy

_ e—t/'rf):l

15)

This equation represents the admittance of a compliance
Cap in parallel with a series compliance Cap, and a
resistance R,p;. The analogous circuit is shown in Fig.
4. The element values are given by

V V
Capi = —5 (1 - f> (17)
PocC

J. Audio Eng. Soc., Vol. 37, No. 7/8, 1989 July/August

FILLED LOUDSPEAKER ENCLOSURES

vy — 1
C =C 18
am2 = CaBl TV = D) poculprer D)
Rapt = —— . (19)
Can2

If the frequency is low enough, the reactance of the
compliance C5p; will be large compared to the resistance
Rag1, so that Rag; can be considered a short circuit
compared to Capy. The admittance Y(s) then reduces
to two parallel compliances. The sum of these is given
by

Capt + Capr = —

X [1 + vy I ] .
1 + v (Ve/Vy — 1) poci/pecs
(20

This expression for the total compliance is valid only
in the frequency range for which Rap; << 1/27fCaps.
This is the frequency range for which the air compression
in the box can be modeled as an isothermal process.
For uncompressed fiberglass filling of the type used in
home construction, the analysis presented in the Ap-
pendix shows that the air compression in the box can
be modeled by an isothermal process for frequencies
below 6.4 kHz. This frequency increases if the fiberglass
is compressed. For fiberglass filling, therefore, it can
be concluded that the resistor Rpg; can be neglected
in the design of woofer enclosures for most practical
purposes.

P
R+AP A ¢ B

P 8

OW_ AW,

2, 0<— force AF e 1

\%
| AVE’! A\/1 |
Vo

(a) (b)

Fig. 3. Calculation of thermodynamic effects of filling. (a)
Force applied to piston in one wall of closed vessel containing
filling material. (b) Pressure versus volume for air in vessel.

Rapt Camo

0

CaBl

Fig. 4. Electroacoustic-analogous circuit modeling ther-
modynamic effects in filled closed box.
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3 MODELING THE MECHANICAL PARAMETERS
OF A FILLING

If a single fiber of the filling material is examined,
it would be found to exhibit a mechanical mass mg,
compliance ¢y, and damping resistance r;. When air
particles flow by the fiber, a force will be generated
due to aerodynamic drag. Let the mechanical velocity
of the fiber be denoted by u; and the air particle velocity
by u,. If 8 is the aerodynamic drag factor between the
fiber and the air, the equation of motion for the fiber
can be written [5]

duf

1
me—— = 8{u, — ug) + reug + o f up de . 2

dt

When this equation is Laplace transformed, the fiber
velocity u; can be solved for as a function of u, and
the complex frequency s to obtain

5
“alis + (p + 0) + leps

ug = (22)

It is assumed that the acoustic wave in the filling is a
one-dimensional wave that propagates in the z direction.
The total aecrodynamic drag on the air particles over
an area A in an interval dz due to the fibers is equal to
the force on a single fiber due to the air multiplied by
the total number of fibers N in the volume element Adz.
The air mass in this volume is pg(1 — V¢/Vp)Adz, where
po is the air density and Vy/Vy is the fraction of the
box volume occupied by the filling. It follows that the
momentum equation for the air in the volume element
Adz is [5]

=
S
TN
L
|
o |
N —_——
b8
o
ol
P
|

ap

= — —Adz — N&(u, — uyg) .
0z

When this equation is Laplace transformed, Eq. (22)
can be used to eliminate u; to obtain the relation

al _ du,

dz Pe dt

(24)

where p is defined to be the complex density of the
medium. It is given by

-1
n{l 1

+ - [z + (25)
s \9 mes + re + licgs

where n = N/Adz is the number of fibers of filling per
unit volume.
An analogous circuit that models the complex density
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p. can be formed. To do this, p is used in place of po
in Eq. (5). It follows that the acoustic impedance Z
associated with M ,p is then given by

-1

+ B 1 + 1
— N —
VwSp 8  mys + re + licgs
(26)

The first term in this equation represents the reactance
of an acoustic mass similar to that given by Eq. (5) for
an unfilled box. The other terms represent the impedance
of an acoustic resistor in parallel with a series acoustic
mass, resistance, and compliance. The equivalent circuit
for Z is given in Fig. 5. The element values in this
circuit are given by

= [p(z) — p(z + d2)]A — Nd(u, — uy)

Po Vi
M =B — |1 - — 27
ABI \/'_rr_SD< VB) 27
B V
Mapy = pr — (28)
\/’ITSD VB
. \/’1TSD
Capz = Bn (29)
Bn
Rapy = VTN re (30)
D
Bn
RAB3 = \/;S— 3 (31)
)
(23)

where the relation p;Vi/Vg = nmy has been used to
eliminate m; from Eq. (28).

The limiting case for the circuit in Fig. 5 for the case
Raps — 0, Rapy — @, and Cups — * is of interest.
Physically, this corresponds to the case where the motion
of each fiber is controlled only by its mass and the
aerodynamic drag between the air and the filling is so
large that the fibers must vibrate with the same velocity

MaBz Rasz CaB3
o ey
RaB3

Fig. 5. Electroacoustic-analogous circuit modeling effects
of mechanical parameters of filling in closed box.
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as the air particles do. In this case, the circuit of Fig.
5 reduces to the series combintion of Mag; + Mags,
which is given by

Map1 + Mapy =

vess [ (- )
w55 | °° Vs

Vi
+ pf*V—B .

The term in brackets in Eq. (32) can be thought of as
being the average density of the air plus filling in the
box. If the volume occupied by the filling is zero, that
is, Vi = 0, the average density becomes pgy. If the
filling occupies the entire box volume, that is, Vi =
Vg, the average density becomes ps. These results agree
with intuitive reasoning.

(32)

4 THE COMPLETED ANALOGOUS CIRCUITS

The complete circuit that models the rear air load
impedance on the diaphragm when the box contains
filling can be formed. This is given by combining in
series the circuits of Figs. 4 and 5. The completed
circuit is shown in Fig. 6. For most applications, this
circuit is probably too complicated for routine calcu-
lations. If the circuit can be approximated by a series
mass, damping resistance, and compliance, it would
greatly simplify calculations. The first step in doing
this would be to consider Rap; to be a short circuit, as
discussed in Sec. 2. In this case, Cap; and Cap, could
be combined into a single capacitor. There are two
ways to reduce the rest of the circuit to a series circuit.
One way would be to consider Rap3 to be an open
circuit, as was discussed. A second way would be to
consider Mg, and Caps to have negligible reactance
so that Rap; and Rap3 could be combined into a single
resistor. Either way, the circuit reduces to a series
mass, damping resistance, and compliance. The ac-
curacy of these approximations would depend on the
type of filling.
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APPENDIX

The time variation of the thermodynamic cooling
effect of filling in an enclosure has been studied in [6].
However, that paper contains errors that invalidate the
conclusions stated. For this reason, a corrected and
abbreviated analysis is presented here. Following a so-
lution derived in [7], the analysis presented in [6] as-
sumes that the temperature of the filling fibers remains
constant as the air temperature varies. The same as-
sumption is made here. Although this is not true in
practice, it will be shown that the error introduced
makes the conclusions obtained conservative.

Each filling fiber is modeled as a cylinder of radius
r1 around which there is a coaxial insulating cylinder
of radius r,. The air between the cylinders represents
the average volume of air that must be cooled by each
fiber. The ratio of r, to ry is denoted by m. Let p,, be
the effective density of the filling in the enclosure and
pr be the bulk density of the fiber. These are related
by the equation m = ry/r) = \/pf/ pm- Let the temperature
of the fiber be held constant at T;. Denote the initial
temperature of the air surrounding the fiber by T, where
T, > T;. It can be shown [7] that the temperature dis-
tribution T as a function of time ¢ and radius r, where
t=0and r; <r < r,is given by

—w2atir?
wiatir?

T(r,0) — Ty _ 2 Jimpn)Volparlry
T, - Tq 2 Toe) — Jimp)
(33)

where Jy and J; are Bessel functions of the first kind
and a is the thermal diffusity of air (a = 1.87 x 107>
m?/s). The function Vo(,r/r;) is given by

Vo (” "’) = Jo<““"r> Yo(itn)
r r
— Jo(n)Yo (“"’r>
r

where Y is a Bessel function of the second kind. The
elements of the set {u,|n = 1, 2, 3, - - -} satisfy the

(34)
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Correction

In the Appendix, the value p; = 0.232 in the numerical example
is erroneously the value for u,. The correct value for p, is

11, = 0.0465

With this value, the upper frequency limit for isothermal operation
is
f=257Hz

not the f = 6.4kHz given in the paper.
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equation
Jl(mu'n)YO(p“n) - ‘IO(p“n)Yl(mp'n) = 0,

n=1273--- (35)
where 0 < py < pry < py < - - -.

The solution given by Eq. (33) represents a sum of
damped exponentials. The term that damps out the
slowest is the n = 1 term. Let 7; be the time constant
associated with this term. It is given by

S

L T S T B
nra  mpia

(36)

This is the dominant time constant for the temperature
response. Following [6], it can be concluded that in
the frequency band defined by f < 1/2wT, air com-
pression in a filled enclosure can be modeled as an
isothermal process provided the temperature of the fill-
ing is maintained constant.

An idea of the effect of allowing the temperature of
the filling to increase as the surrounding air cools can
be obtained from a simple analog. The heat capacity
of either the air or the fiber can be expressed by the
equation 0 = KT, where Q is the heat capacity in
joules, K is a constant depending on the material, and
T is the absolute temperature. An electrical analog of
this equation is the one relating the charge on a capacitor
to the voltage, that is, g = CV, where ¢ is the charge
in coulombs, C is the capacitance, and V is the voltage.
If Q is analogous to ¢ and T is analogous to V, the
cooling of the air can be modeled by the discharge of
a capacitor C; through a resistor R. For the case that
the fiber is held at a constant temperature, the capacitor
discharges into a constant voltage that is analogous to
the fiber temperature so that the time constant is RC].
This corresponds to the case where the fiber has an

PAPERS

infinite heat capacity so that it can be modeled as an
infinite capacitor C, having a constant voltage. If C;
is not infinite, its voltage will increase as the voltage
on the C; decreases. It follows that the time constant
in this case is RC1C,/(C, + C,), which is smaller than
RC,.

If the dominant time constant of the air—fiber system
for the case where the fiber temperature is not constant
is denoted by Ty, it follows from the analog that 7 <
71. Because 1/1; < 1/714, it can be concluded that in the
frequency band defined by f < 1/277, air compression
in a filled enclosure can be modeled as an isothermal
process in the case that the heat capacity of the filling
is not infinite. Therefore a numerical evaluation of Eq.
(36) for the typical parameters encountered in loud-
speaker systems can be used to make a conservative
calculation of the frequency band over which the air
compression in the box can be modeled by an isothermal
process.

In [6] it is given that a typical fiber of the fiberglass
insulation used in home construction has a radius r; =
5 X 107% m and a density p; = 2400 kg/m>. In its
uncompressed state, the effective density of the fiber-
glass is pm = 6 kg/m>. When it is compressed to its
practical maximum, its effective density is p,, = 600
kg/m>. An evaluation of Eq. (35) for the uncompressed
effective density of p, = 6 kg/m® yields the value
py = 0.232. This gives an upper frequency limit for
isothermal operation of f = 6.4 kHz. For any value of
pm larger than 6 kg/m®, this frequency is increased.
Because the resonance frequency of closed-box woofer
systems is much lower than 6.4 kHz, it can be concluded
that the transient thermal effects of fiberglass filling
can be neglected in loudspeaker system design. (This
result contradicts that given in [6], where it is stated
that fiberglass must be compressed to four times its
uncompressed state to obtain isothermal operation for
frequencies less than 100 Hz.)
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