
Signal Detection Strategies and Algorithms
for Multiple-Input Multiple-Output Channels

A Thesis
Presented to

The Academic Faculty

by

Deric W. Waters

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
December 2005

Signal Detection Strategies and Algorithms
for Multiple-Input Multiple-Output Channels

Approved by:

Dr. John R. Barry, Advisor Dr. Doug B. Williams
School of Electrical and School of Electrical and
Computer Engineering Computer Engineering
Georgia Institute of Technology Georgia Institute of Technology

Dr. Ye (Geoffrey) Li Dr. Steven W. McLaughlin
School of Electrical and School of Electrical and
Computer Engineering Computer Engineering
Georgia Institute of Technology Georgia Institute of Technology

Dr. Alfred Andrew
School of Mathematics
Georgia Institute of Technology

Date Approved: 15 November 2005

To Mom and Dad.

iv

 ACKNOWLEDGEMENTS

I would like to thank my advisor John Barry. His feedback has always been excellent, and my

work was best when trying to answer his questions and correct the flaws he pointed out. I was

fortunate to have an advisor who gave me complete freedom to work at my own pace on problems

that interested me.

v

 TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ACRONYMS . xi

SUMMARY . xii

1 PROBLEM INTRODUCTION AND MOTIVATION. 1

1.1. Channel Model. 3
1.2. Optimal Detection . 5
1.3. Linear Detection . 6
1.4. The Performance-Complexity Trade-Off. 6
1.5. Thesis Outline . 10

2 STATE-OF-THE-ART MIMO DETECTION . 11

2.1. Decision-Feedback Detection . 12
2.2. Controlling Symbol-Detection Order to Improve the DF Detector 14
2.3. The MMSE Channel Model. 17
2.4. Lattice-Aided Detection. 19
2.5. Sphere Detection: Reducing the Complexity of the ML Detector. 25
2.6. Approximating the ML detector . 29

3 REDUCING COMPLEXITY OF THE OPTIMALLY-ORDERED DF DETECTOR 34

3.1. ZF Noise-Predictive DF Detection . 36
3.2. Optimally-Ordered Noise-Predictive DF Detection . 39
3.3. Noise-Predictive MMSE DF Detection . 43
3.4. Noise-Predictive BODF Detection Given the Channel Matrix 47
3.5. Comparing Different DF Implementations . 48
3.6. Chapter Summary . 53

vi

4 IMPROVING THE PERFORMANCE OF THE LINEAR DETECTOR WITH LOW-COMPLEXITY 54

4.1. Partial Decision-Feedback Detection. 55
4.2. Performance Analysis . 60
4.3. Complexity. 61
4.4. Numerical Results . 62
4.5. Chapter Summary . 64

5 THE CHASE FAMILY OF DETECTION ALGORITHMS . 65

5.1. Chase Detection: A General Framework . 67
5.2. The B-Chase detector: A New Chase Detector . 70
5.3. Implementing the B-Chase Detector . 75
5.4. The S-Chase Detector . 82
5.5. Performance and Complexity Numerical Results . 84
5.6. Chapter Summary . 94

6 REDUCING COMPLEXITY OF THE LATTICE-AIDED DF DETECTOR. 95

6.1. Lattice-Aided Decision-Feedback Detection. 95
6.2. Double-Sorted Lattice-Reduction . 97
6.3. Numerical Results . 102
6.4. Chapter Summary . 106

7 CONCLUSION . 107

APPENDIX A BLAST-ORDERING ALGORITHM . 111

APPENDIX B SORTED-QR DECOMPOSITION . 113

APPENDIX C LLL LATTICE-REDUCTION ALGORITHM . 116

REFERENCES . 118

VITA . 122

vii

 LIST OF TABLES

Table 3-1: Preprocessing complexity of the BLAST sorting algorithm in real

multiplications (See Figure 3-4). ...49

Table 3-2: Total complexity of the BLAST sorting algorithm in real multiplications

(See Figure 3-4). ..50

Table 5-1: Special cases of the Chase detector..69

Table 6-1: Complexity of the DOS-DF preprocessing from Figure 6-2.101

viii

 LIST OF FIGURES

Figure 1-1 Illustration of the MIMO channel. 5

Figure 1-2 Performance of the ML and linear detectors as averaged over
105 4-input 4-output Rayleigh-fading channels with 16-QAM inputs. 9

Figure 2-1 The conventional decision-feedback detector. 12

Figure 2-2 The recursive decision-feedback detector. 15

Figure 2-3 Performance of the MMSE and ZF versions of the DF detector
with and without ordering. Results averaged over 105 4-input
4-output Rayleigh-fading channels with 16-QAM inputs. 20

Figure 2-4 Performance of the linear and DF detectors with and without the
help of LLL lattice reduction as averaged over 105 4-input 4-output
Rayleigh-fading channels with 16-QAM inputs. 25

Figure 2-5 Performance of the truncated-sphere detector with various
complexity limits as averaged over 105 4-input 4-output
Rayleigh-fading channels with 16-QAM inputs. 32

Figure 3-1 The noise-predictive DF detector. 37

Figure 3-2 The noise-predictive sorting algorithm. 41

Figure 3-3 The noise-predictive sorting algorithm using the upper triangular
sorted-QR decomposition. 42

Figure 3-4 Three different implementations of the MMSE BLAST-ordered DF
detector. 50

Figure 3-5 Complexity comparison for various BLAST-sorting algorithms for
the zero-forcing BODF detector, with M = N. 52

Figure 4-1 Noise-predictive partial DF detector. 59

Figure 4-2 Noise-predictive partial DF detector algorithm. 59

ix

Figure 4-3 Performance versus complexity for the MMSE versions of the
linear detector and the noise-predictive PDF, and BODF detectors.
Results averaged over 105 N-input N-output Rayleigh fading channels
where L = 1. 64

Figure 5-1 Block diagram of the Chase detector. 68

Figure 5-2 Decision regions (shaded) of the list detector for 4-QAM with
different list lengths. When a = e jπ/4 is transmitted, the output of
the list detector contains a if the output of the linear filter lies within the
shaded region. . 71

Figure 5-3 (a) Overall block diagram for the B-Chase detector.
(b) Block diagram for the DF subdetector when N = 3. 76

Figure 5-4 A computationally-efficient implementation of the B-Chase detector. 77

Figure 5-5 The preprocessing algorithm for the proposed implementation of
the B-Chase detector that uses Selection Algorithm #1. 79

Figure 5-6 Preprocessing for the S-Chase Detector. 84

Figure 5-7 SNR required versus number of antennas for various detectors.
Results are averaged over 105 N-input N-output Rayleigh-fading
channels with 16-QAM inputs. 86

Figure 5-7 Performance-complexity trade-off averaged over 105 4-input
4-output Rayleigh-fading channels that are changing slowly (L = ∞)
with 16-QAM inputs and target BER 10−3. 90

Figure 5-8 Performance-complexity trade-off averaged over 105 Rayleigh-
fading 4-input 4-output channels that are changing slowly (L = ∞)
with 16-QAM inputs and target BER 10−2. 91

Figure 5-9 Performance-complexity trade-off averaged over 105 4-input
4-output Rayleigh-fading channels that are changing quickly (L = 4)
with 16-QAM inputs. 93

Figure 6-1 The weak-Gramm-Schmidt reduction algorithm. 99

Figure 6-2 The DOS-DF detector algorithm. . 100

Figure 6-3 Performance versus preprocessing complexity trade-off
averaged over 105 4-input 4-output Rayleigh-fading channels
with 16-QAM inputs. . 105

x

Figure A-1 The BLAST-ordered decision-feedback (BODF) detector
using a modification of the original sorting algorithm. 112

Figure B-1 The lower-triangular sorted-QR decomposition. 114

Figure B-2 The upper-triangular sorted-QR decomposition. 115

Figure C-1 The LLL lattice-reduction algorithm for lower-triangular matrices. 117

xi

 LIST OF ACRONYMS

• BER Bit-Error Rate

• BLAST Bell Labs LAyered Space-Time

• BODF BLAST-Ordered Decision-Feedback

interchangeable with optimally-ordered decision-feedback.

• CDMA Code-Division Multiple Access

• DF Decision-Feedback

• DOS DOuble-Sorted lattice reduction

• LA-DF Lattice-Aided Decision-Feedback

• LLL Lenstra-Lenstra-Lov<sz

• MIMO Multiple-Input Multiple-Output

• ML Maximum-Likelihood

• MMSE Minimum Mean-Squared Error

• MSE Mean-Squared Error

• NP Noise Predictive

• PDF Partial Decision-Feedback

• QAM Quadrature Amplitude Modulation

• RM Real Multiplications

• SNR Signal-to-Noise Ratio

• ZF Zero-Forcing

xii

 SUMMARY

In today’s society, a growing number of users are demanding more sophisticated

services from wireless communication devices. In order to meet these rising demands, it

has been proposed to increase the capacity of the wireless channel by using more than one

antenna at the transmitter and receiver, thereby creating multiple-input multiple-output

(MIMO) channels. Using MIMO communication techniques is a promising way to

improve wireless communication technology because in a rich-scattering environment the

capacity increases linearly with the number of antennas. However, increasing the number

of transmit antennas also increases the complexity of detection at an exponential rate. So

while MIMO channels have the potential to greatly increase the capacity of wireless

communication systems, they also force a greater computational burden on the receiver.

Even suboptimal MIMO detectors that have relatively low complexity, have been

shown to achieve unprecedented high spectral efficiency. However, their performance is

far inferior to the optimal MIMO detector, meaning they require more transmit power. The

fact that the optimal MIMO detector is an impractical solution due to its prohibitive

complexity, leaves a performance gap between detectors that require reasonable

complexity and the optimal detector. The objective of this research is to bridge this gap

and provide new solutions for managing the inherent performance-complexity trade-off in

MIMO detection.

xiii

The optimally-ordered decision-feedback (BODF) detector is a standard low-

complexity detector. The contributions of this thesis can be regarded as ways to either

improve its performance or reduce its complexity − or both.

• We propose a novel algorithm to implement the BODF detector based on noise-

prediction. This algorithm is more computationally efficient than previously

reported implementations of the BODF detector. Another benefit of this algorithm

is that it can be used to easily upgrade an existing linear detector into a BODF

detector.

• We propose the partial decision-feedback detector as a strategy to achieve nearly

the same performance as the BODF detector, while requiring nearly the same com-

plexity as the linear detector.

• We propose the family of Chase detectors that allow the receiver to trade perfor-

mance for reduced complexity. By adapting some simple parameters, a Chase

detector may achieve near-ML performance or have near-minimal complexity. We

also propose two new detection strategies that belong to the family of Chase detec-

tors called the B-Chase and S-Chase detectors. Both of these detectors can achieve

near-optimal performance with less complexity than existing detectors.

• Finally, we propose the double-sorted lattice-reduction algorithm that achieves

near-optimal performance with near-BODF complexity when combined with the

decision-feedback detector.

1

CHAPTER 1

PROBLEM INTRODUCTION AND MOTIVATION

The means by which people communicate have been revolutionized with the advent of

wireless communication technology. As more and more people begin to use different

wireless communication technologies, service providers need to improve the reliability

and throughput of their systems. For example, most local area networks (LANs) are built

on wired infrastructure, but wireless LANs can provide a degree of mobility and freedom

that make them an attractive alternative. However, before their large-scale adoption,

wireless LAN technologies must improve their reliability and throughput.

The reliability and throughput of wireless communication systems can be improved by

adding multiple antennas at the transmitter and receiver to create multiple-input multiple-

output (MIMO) channels. Narrowband MIMO channels with rich scattering have greater

potential throughput than conventional single-input single-output channels because the

capacity of the MIMO channel increases linearly as the number of transmit and receive

antennas increases [21]. MIMO channels also provide greater reliability because the

probability of all the subchannels between the transmitter and receiver fading at the same

time decreases exponentially as antennas are added.

The problem of data throughput comes down to a problem of spectral efficiency. If

unlimited bandwidth were available, then wireless systems would have no problem

accommodating any number of users demanding high quality service. However, the

availability of frequency spectrum has physical and legal restrictions. This means that

wireless communication systems need to use the radio spectrum more efficiently in order

2

to increase their throughput. By employing multiple antennas at the transmitter and

receiver, MIMO systems can greatly increase spectral efficiency while decreasing the total

transmit power.

Of course, the benefits of using multiple antennas at the transmitter and receiver do not

come without costs. One fundamental obstacle for MIMO systems is the increased

complexity of recovering the transmitted information. As the capacity increases linearly

with the number of antennas, the complexity of the detection problem increases

exponentially with the number of transmit antennas. As a result, the maximum-likelihood

(ML) detector, which finds the best symbol vector from among an exponential number of

possibilities, is prohibitively complex even for small numbers of channel inputs.

Suboptimal detectors can achieve the same spectral efficiency as the ML detector, but they

need more transmit power to do so. In fact, the performance of MIMO detectors is

measured by the amount of transmit power, or signal-to-noise ratio (SNR), they require to

recover the transmitted data. The ML detector has optimal performance, but requires

exponential complexity in return. Some suboptimal detectors require only linear

complexity, but they cannot achieve optimal performance. This gives rise to an inherent

trade-off between performance and complexity in MIMO detection.

The objective of this research is to investigate new detection techniques which make

the realization of MIMO systems more practical by improving the performance-

complexity trade-off of MIMO detectors. The Bell Labs Layered Space-Time (BLAST)

MIMO system [21] has demonstrated that MIMO systems are feasible that can

dramatically increase spectral efficiency with reasonable complexity. However, the

3

performance and complexity gaps between the optimal detector and the suboptimal

detector used in the BLAST system are enormous, which leaves substantial room for

improvement.

Left with the choice between the ML and low-complexity detectors, a MIMO system

designer will quickly discover that the detector is either the predominant source of

complexity in the system, or else the predominant source of performance loss. This thesis

shrinks the performance gap between low-complexity detectors and the ML detector.

In this chapter, we describe the MIMO channel model and introduce two standard

ways to perform detection. Specifically, we define optimal MIMO detection as well as a

low-complexity detector called the linear detector. The huge performance and complexity

gaps between these detectors will be shown to illustrate the fundamental trade-off between

performance and complexity in MIMO detection. This introduction also provides

background for later chapters, which describe better ways to perform MIMO detection.

1.1. Channel Model

In this thesis we consider the problem of communicating over narrowband

memoryless MIMO channels with rich-scattering. Two primary applications of this

channel are wireless point-to-point [21] and code-division multiple-access (CDMA) [16]

communications. In point-to-point systems the antennas at both the transmitter and

receiver are located nearby each other, but separated by at least half a wavelength to insure

independent fading. In CDMA systems, users are separated geographically, but since their

signals have a common destination they are grouped together to form a single transmitter

that has multiple antennas.

4

Figure 1-1 illustrates a MIMO channel. Mathematically, the memory-less channel with

N inputs a = [a1, … aN]T and M outputs r = [r1, … rM]T can be written as:

r = Ha + w , (1-1)

where H = [h1, … hN] is a complex M × N channel matrix whose i-th column is hi, and

where w = [w1, … wM]T is noise. We assume that the columns of H are linearly

independent, which implies M ≥ N. We assume that the noise is uncorrelated such that

E[ww*] = σ2I , where w* denotes the conjugate transpose of w, I is the N × N identity

matrix, and σ2 is the variance of the noise. Further, we assume that the inputs are

uncorrelated and chosen from the same unit-energy alphabet A, so that E[aa*] = I.

The memoryless MIMO channel is often simulated using Rayleigh fading. In other

words, the real and imaginary parts of each element of the channel matrix H are

independently and identically distributed Gaussian random variables with a variance of

one half. Rayleigh fading accurately describes a rich scattering channel with antenna

elements that are separated by at least half a wavelength [39]. In the numerical simulations

throughout this thesis, the MIMO channel is simulated as a Rayleigh-fading channel.

In some cases it is beneficial to represent the MIMO detection problem in terms of a

real channel, with real-valued inputs and outputs. The channel model (1-1) can be

converted into a real-valued expression as follows [20]:

, (1-2)

where and represent the real and imaginary parts, respectively. This real-valued

channel model is denoted as:

. (1-3)

ℜr
ℑr

ℜH ℑH–
ℑH ℜH

ℜa
ℑa

ℜw
ℑw

+=

ℜ ℑ

rR HRaR wR+=

5

1.2. Optimal Detection

The ML detector is defined from the likelihood of observing r given that the vector

was transmitted. As the name implies the maximum-likelihood detector finds the decision

vector which maximizes this likelihood function. If the channel is known to the

receiver, and the noise is zero-mean Gaussian the likelihood function is defined as:

p(r|) = . (1-4)

The search for the ML decision vector can be formalized succinctly as:

= || r − H ||2 , (1-5)

where AN is the set of all possible transmit vectors. The ML detector is straightforward,

but a brute-force implementation of (1-5) quickly becomes prohibitive as N or |A|

increases, where |A| is the cardinality of A.

 Figure 1-1. Illustration of the MIMO channel.

r1

rM

…

r2

r…

…a =

a1

…
aN

H

M × N

â

â

â
1

πσ2()N
------------------ r Hâ– 2

σ2
--------------------------–

 exp

â argmin
ã AN∈

ã

6

1.3. Linear Detection

The simplest MIMO detector is the zero-forcing linear detector [41], which simply

inverts the channel matrix. For the case when the inverse of the channel does not exist, the

pseudoinverse of the channel matrix is used. The linear detector begins by multiplying the

channel output by the channel matrix pseudoinverse:

y = (H*H)−1H*r

= a + (H*H)−1H*w . (1-6)

A slicer is used to make a decision regarding the k-th channel input. The slicer chooses the

element from the symbol alphabet nearest yk:

= || yk − a ||2

= dec{yk}. (1-7)

The linear detector performs poorly when the channel matrix is close to being singular

because it amplifies the noise. On the other hand, when the channel matrix is orthogonal

the linear detector does not amplify the noise, and is equivalent to the ML detector.

1.4. The Performance-Complexity Trade-Off

Performance of MIMO detectors is measured in decibels (dB) of SNR. The SNR of a

system is directly proportional to the transmit power, which is directly related to the cost

of transmission in the communication system. With enough transmit power, any MIMO

detector can achieve a small probability of bit error, or bit-error rate (BER). However,

transmit power is expensive, so the detector’s goal is to minimize the amount of SNR

âk
argmin
a A∈

7

required to reach the necessary BER. In order to quantify the amount of signal power

needed to effectively communicate each bit across the channel, we measure the SNR as

E[||Ha ||2] / (E[||w ||2] log2|A|).

Ideally, the complexity metric for MIMO detection should provide a universal

measure of how fast a particular MIMO detector can operate, as well as how expensive it

is to implement. Unfortunately, such a universal complexity metric is impossible to define

because the speed and cost of a given detector depends upon how it is actually

implemented. For example, the cost and speed of implementing an algorithm on a digital

signal processor is different from the cost of implementing it in hardware. However,

simply counting the number of multiplications required by a given detector gives a

reasonable indication of how costly it would be to implement.

The total complexity of a MIMO detector is divided into preprocessing and core-

processing complexity. The preprocessing complexity includes those computations which

are performed only once for a given channel matrix. Once the channel estimation is

updated or changed, the preprocessing computations need to be recalculated. The core-

processing complexity includes only those computations that are necessary for every

symbol period. The faster the channel changes, the more important it becomes to reduce

preprocessing complexity. On the other hand, if the channel changes slowly then the

preprocessing contributes relatively little to the total complexity, and reducing the core-

processing complexity is most important.

There is a fundamental trade-off in MIMO detection systems between performance

and complexity. Although the brute-force ML detector (1-5) is conceptually simple and

achieves optimal performance, it is impractical due to its high core-processing complexity.

8

On the other hand, the linear detector (1-7) has low core-processing complexity, but its

performance is far from optimal. The enormous gap in performance between the ML and

linear detectors is illustrated in Figure 1-2, where the ML detector requires about 17 dB

less SNR to reach a BER of 10−3 than the linear detector. At the same time, the brute-force

ML detector may require as many as N |A|N multiplications, while the linear detector

needs only multiplications. This means that to achieve the performances shown in

Figure 1-2, the ML detector could need more than 5000 times as many multiplications as

the linear detector.

The objective of this research is to investigate new detection techniques for MIMO

channels whose performance is close to that of the ML detector, and whose complexity is

near that of the linear detector.

3MN

9

5 10 15 20 25 30 35
10−5

10−4

10−3

10−2

10−1

100

LINEAR

ML

 Figure 1-2. Performance of the ML and linear detectors as averaged
over 105 4-input 4-output Rayleigh-fading channels with
16-QAM inputs.

SNR (dB)

B
E

R

10

1.5. Thesis Outline

Chapter 2 gives an extensive review of existing MIMO detection techniques. In

particular, one low-complexity that plays a central role in this thesis is the decision-

feedback (DF) detector, which is introduced in this chapter.

The new contributions of this thesis are presented in detail in the next five chapters.

• Chapter 3 describes how implementing the optimally-ordered DF detector using

noise prediction can reduce its complexity.

• Chapter 4 introduces the partial DF detector which is less complex than the opti-

mally-ordered DF detector and has only a small performance penalty.

• Chapter 5 describes the Chase family of detectors that allow the receiver to trade

performance for complexity by adjusting a single parameter. This chapter also uses

the Chase detector framework to introduce new low-complexity detectors that

achieve near-ML performance.

• Chapter 6 investigates lattice-aided DF detection, and describes the double-sorted

(DOS) lattice-reduction algorithm. It is shown that the combination of DOS lattice

reduction and DF creates a detector that achieves near-ML performance with low

complexity.

Chapter 7 draws some final conclusions and summarizes the contributions of this

research.

11

CHAPTER 2

STATE-OF-THE-ART MIMO DETECTION

The main topic of this research is to find detectors whose performance is as close to

that of the maximum-likelihood (ML) detector as possible, and whose complexity is as

low possible. This problem has been addressed extensively in the literature, and our goal

is to improve performance and/or reduce the complexity of existing detectors. This

chapter describes the state-of-the-art in MIMO detection, then subsequent chapters

describe new detection techniques. First, Section 2.1 describes a simple way to improve

upon linear detection called the decision-feedback (DF) detector. Then the next three

sections describe ways to improve the performance of the DF detector. Specifically,

Section 2.2 presents how to improve the DF detector by choosing the order in which the

symbols are detected. Next, Section 2.3 describes another way to improve the

performance of not only the DF detector, but also the linear detector by replacing the zero-

forcing design criterion with its minimum mean-squared error (MMSE) counterpart. In

many cases, the MMSE versions of the detectors outperform the zero-forcing versions

significantly with only a small complexity increase. Section 2.3 introduces the MMSE

channel model, and shows how it simplifies the implementation of MMSE detectors.

Section 2.4 introduces a detection technique called lattice-aided detection, which can

achieve near-ML performance with low complexity. Besides improving the performance

of the DF detector, another approach to achieving a better performance-complexity trade-

12

off is to reduce the complexity of the ML detector. Section 2.5 shows how to reduce the

complexity of the ML detector using sphere detection. Finally, Section 2.6 discusses ways

to sacrifice performance in order to reduce the complexity of the sphere detector.

2.1. Decision-Feedback Detection

A standard low-complexity detector first proposed in the context of multiuser

detection for CDMA systems [16] is the decision-feedback (DF) detector, also known as

the successive interference canceller. In short, the DF detector uses nonlinear feedback to

reduce the noise enhancement suffered by the linear detector.

Figure 2-1 shows a block diagram of the DF detector of the conventional zero-forcing

(ZF) DF detector. This detector is based on the QR decomposition [24] of the channel:

H = QDM, (2-1)

+
–

– –

r

y1

 Figure 2-1. The conventional decision-feedback detector.

m2,1

…

â1

+

y2

y3

m3,1 m3,2

D−1Q* â2

â3

y

…

13

where Q = [q1, … qM] is an M × N matrix with orthonormal columns, where D is a N × N

diagonal matrix with diagonal elements that are positive and real, and where M is a lower

triangular matrix with ones along the diagonal.

The DF detector first applies a forward filter D−1Q* to the received vector y = D−1Q*r,

yielding:

y = Ma + D−1Q*w . (2-2)

The i-th element of y is thus:

yi = ai + mi,jaj + qi*w / di,i, (2-3)

where mi,j is the element from the i-th row and j-th column of the matrix M. Since M is

lower triangular, y1 is free of interference. As a result, the decision can be found

directly by quantizing y1 to the nearest element in the symbol alphabet A . Using this

decision, the interfering term can be subtracted from y2. Proceeding iteratively, the ZF-DF

detector is succinctly defined by the following recursion:

. (2-4)

The performance of the DF detector is best understood by comparing the SNR of each

symbol at the input to the slicer. From (2-3) and (2-4), the input to the slicer is written as:

yi = ai + mi,j(aj −) + qi*w / di,i. (2-5)

If the interference is cancelled perfectly, then the SNR of the i-th symbol is . For

Rayleigh-fading channels, the first symbol almost always has the weakest SNR since

is a Chi-squared random variable with 2i degrees of freedom. This means that the first

j i<
∑

â1

âk dec yk mk j, âj
j k<
∑–

=

j i<
∑ âj

di i,
2 σ2⁄

di i,
2

14

symbol is the most likely to be detected incorrectly, making it the performance bottleneck

for the DF detector.

Figure 2-2 shows a recursive implementation for the DF detector which is functionally

equivalent to the conventional DF detector already discussed. This approach is preferable

in some cases because it does not require knowledge of the matrix M. The forward filter is

denoted as F = D−1Q*, and its k-th row is fk. The recursive-DF detector applies the

forward filter one row at a time. Specifically, the receiver first computes z1 = f1r :

z1 = a1 + q1*w / d1,1. (2-6)

The decision regarding a1 is computed by passing y1 through a symbol slicer,

. Next, the receiver recreates the channel interference in order to cancel it:

r1 = r − h1 . (2-7)

After this interference cancellation, the receiver repeats the same process. Specifically, to

detect the second symbol the receiver computes z2 = f2r1, if then z2 reduces to:

z2 = a2 + q2*w / d2,2, (2-8)

and the decision regarding the second symbol is . This procedure continues

until the receiver has detected all the symbols.

2.2. Controlling Symbol-Detection Order to Improve the DF Detector

One way to improve the performance of the DF detector is to control the order in

which the symbols are detected. Since all the symbols arrive at the receiver

simultaneously the receiver may detect them in any order. Since the first symbol limits the

performance of the DF detector, it is easy to see that the DF detector performance will

â1 dec z1{ }=

â1

a1 â1=

â2 dec z2{ }=

15

improve if we detect the symbol with the strongest SNR first. Most proposed detection

orderings depend only on the channel matrix H, but performance can be improved by

choosing a detection ordering that also depends on the channel output [37].

Like the DF detector, the ordered-DF detector is based on the QR decomposition of

the channel matrix (2-1). The difference is that controlling the detection order is

equivalent to permuting the columns of the channel matrix with a permutation matrix Π.

This column permutation creates a new channel model:

r = HΠ Π*b + w

= b + w , (2-9)

where b = Π*a is the new channel input, and = HΠ is the new channel matrix. The

ordered-DF detector is implemented in basically the same way as the DF detector except

that it uses this new channel model. The QR decomposition has the same form as for the

DF detector (2-1):

HΠ = QDM. (2-10)

r

 Figure 2-2. The recursive decision-feedback detector.

…

â1

f1 h1

–+
r1

â2

f2 h2

–+
r2 rN−1

âN

fN

H̃

H̃

16

After this decomposition, the ordered-DF detector first makes decisions regarding b in the

same way the DF detector made decisions regarding a (see (2-2)−(2-4)). It must then

transform those decisions regarding b into decisions regarding a by reversing the channel

permutation, . Obviously the DF detector is a special case of the ordered-DF

detector where the permutation matrix is simply the identity matrix Π = I.

The ordered-DF detector introduces the new problem of finding the best permutation

matrix Π. This could be a difficult problem since there are N! possible permutations, but it

was shown in [22] that the greedy algorithm which recursively chooses the symbol with

the largest SNR is optimal. This so-called BLAST ordering [22] computes the permutation

matrix in an optimal way because it maximizes the minimum SNR of the symbols. The

BLAST ordering effectively strengthens the weakest link in the system by only increasing

the preprocessing complexity. The original BLAST-ordering algorithm required O(N4)

multiplications [23], but it can also be computed with only O(N3) multiplications

[3][25][50][52]. Appendix A gives a reduced-complexity version of the original BLAST-

ordering algorithm.

The impact of ordering on the performance of the DF detector is illustrated by

Figure 2-3, where using the BLAST ordering instead of natural ordering leads to about a 4

dB improvement in the performance of the zero-forcing DF detector.

Some suboptimal symbol orderings have been proposed to reduce the complexity of

computing the permutation matrix [43][47]. The sorted-QR decomposition [47] is an

example of a low-complexity way to compute a detection ordering that performs worse

than the BLAST ordering but still much better than the natural ordering. The main

advantage of using the sorted-QR decomposition is that it has almost the same

â Πb̂=

17

preprocessing complexity as the conventional QR decomposition, or about half as much

preprocessing complexity as computing the BLAST ordering. Appendix B gives

pseudocode for a lower-triangular and an upper-triangular sorted-QR decomposition.

2.3. The MMSE Channel Model

An easy way to improve the performance of low-complexity detectors without

increasing core complexity is to design them using the minimum mean-squared error

(MMSE) criterion. At the receiver, the intersymbol interference is detrimental to

performance. The zero-forcing (ZF) detector solves this problem by completely cancelling

out all interference. However, in doing so the ZF detector throws away some useful signal

energy. In contrast, the MMSE detector will leave some low-power interference if it can

capture more signal energy in doing so. By balancing the trade-off between cancelling

interference and maximizing signal energy, the MMSE detector outperforms the ZF

detector.

We illustrate the difference between ZF and MMSE detectors using the linear detector

as an example. ZF and MMSE linear detectors use different criteria to minimize the mean-

squared error (MSE). The MSE is defined as:

, (2-11)

where C is an M × N linear filter. The MMSE detector chooses C to minimize the MSE

without any constraint [41]:

. (2-12)

The ZF detector has less freedom to choose C because it requires that CH = I in order to

completely cancel interference:

MSE Cr a– 2=

C H∗H σ2I+() 1– H∗=

18

. (2-13)

Unless there no noise () the MMSE linear detector has smaller MSE than the ZF

linear detector, and this translates into a performance improvement.

As the SNR tends to infinity, the MMSE and ZF versions of a given detector converge.

A practical implication of this is that MMSE detectors perform better for small

quadrature-amplitude modulation (QAM) alphabets. For example, for 64-QAM inputs the

MMSE and ZF decision-feedback detectors have almost the same performance, but for 4-

QAM inputs the MMSE DF detector achieves a significant performance improvement.

MMSE detectors can be explained using a simple modification to the channel model

(1-1). The MMSE channel model is based upon the extended channel matrix [6][25]:

, (2-14)

where is the receiver’s estimate of the noise variance σ2. The output of this new

channel model is = [rT, 01×N]T:

. (2-15)

The MMSE versions of the linear, DF, and ordered-DF detectors are defined by applying

the corresponding zero-forcing detectors to this new channel model. For example, the

linear detector (1-6) is obtained by multiplying by the pseudoinverse of , then

quantizing the result to the nearest symbol in the alphabet:

 = dec{(*)−1 * }, (2-16)

where dec{x} quantizes each of the elements in x = [x1, … xN]T to the nearest symbol in A

in the Euclidean distance sense. The ordered-DF detector is implemented as already

C H∗H() 1– H∗=

σ2 0=

H
H

σ̂INxN

=

σ̂2

r

r Ha w+=

r H

â H H H r

19

described in (2-2)−(2-4), except that the QR decomposition and permutation matrix are

computed based on instead of H:

Π = QDM. (2-17)

Computing this QR decomposition, including the permutation matrix, requires more

computations than (2-10) because has larger dimensions than H. But the remainder of

the MMSE version of the ordered-DF detector requires exactly the same complexity as the

ZF ordered-DF detector. In fact, a ZF detector is just a special case of its MMSE

counterpart, because if the receiver estimates the noise variance as = 0 then the MMSE

QR decomposition (2-17) reduces to the ZF QR decomposition (2-10).

Figure 2-3 shows the performance improvement achieved by the MMSE versions of

the BODF and DF detectors over 4-input 4-output Rayleigh-fading channels with 16-

QAM inputs. The MMSE version of the BODF detector outperforms its ZF version by

about 4 dB. This is a significant performance improvement that is achieved with a small

increase in preprocessing complexity, but with no additional core-processing complexity.

2.4. Lattice-Aided Detection

A new approach to solving the detection problem is created by viewing the channel

output as a point in the lattice generated by the channel matrix. This approach helps the

detector because the matrix that generates this lattice is not unique, and the receiver can

find “better” matrices that generate the same lattice. Lattice-aided detectors achieve near-

ML performance by using a lattice-reduction algorithm (such as the LLL algorithm

[31][34][44][46]) to create a more orthogonal effective channel. However, finding the best

lattice-reduction is in general an NP-complete problem, and the viability of lattice-aided

H

H

H

σ̂2

20

detection is limited in practice by the high complexity of lattice-reduction algorithms.

Particularly on wireless channels that vary rapidly with time, the high overhead of lattice

reduction can waste much of the computational savings.

In this subsection we will introduce a general framework to describe lattice-aided

detection. The standard approach for implementing lattice-aided detector has been to use

the real channel model (1-3), because then the detection problem becomes a search for the

nearest point in an integer lattice. However, lattice-aided MIMO detection can just as

5 10 15 20 25 30 3510−4

10−3

10−2

10−1

UNORDERED-DF

BLAST-ORDERED-DF

ZF

ZF
MMSE

MMSE

 Figure 2-3. Performance of the MMSE and ZF versions of the DF detector
with and without ordering. Results averaged over 105 4-input
4-output Rayleigh-fading channels with 16-QAM inputs.

SNR (dB)

B
E

R

21

easily be defined in terms of the complex channel, often resulting in less complex

detectors [34]. We will describe lattice-aided detection for complex channels, but our

discussion is also valid for real channels.

A complex integer is defined as a complex number whose real and imaginary parts are

both integers. A complex lattice is defined as the set of all linear combinations of a set of

linearly independent basis vectors {b1, … bN} with complex integer coefficients, where N

is the lattice dimension. In terms of the matrix B = [b1, … bN], the lattice points can be

written as Bx where x is a vector of complex integers.

The basis for a lattice is not unique. If B is a basis, the product BT will also be a basis

whenever T is an N × N unimodular matrix; i.e., whenever T and T−1 have complex integer

entries. Trivial examples of unimodular matrices include the identity matrix and

permutation matrices. Lattice reduction is a technique for finding a unimodular T matrix

that transforms one basis into another, usually with the goal of making the new basis as

orthogonal as possible.

One constraint of lattice-aided detection is that the symbol alphabet must contain only

complex integers. This rules out the use of some phase-shift keying (PSK) alphabets. For

lattice-aided detection, we assume that the inputs are chosen from the same QAM alphabet

A = {±c, ±3c, … ±(–1)c} + {±c, ±3c, … ± (–1)c}, where such

that E[aa*] = I. Since this alphabet has elements that are not integers, the output of the

channel must be scaled and shifted such that the effective alphabet lies on a subset of the

complex lattice. The result of this scaling and shifting is denoted as , and is called the

effective channel output:

= − s, (2-18)

q 1– q c 1.5 q 1–()⁄=

r̃

r̃ r 2c()⁄ H

22

where is the output of the MMSE channel model (2-15), and where

. The effective channel output further reduces to:

= , (2-19)

where the input vector has been transformed b = , and is the noise of the

effective channel. The benefit of operating on instead of is that the real and imaginary

parts of b belong to the set of integers {– /2, – /2 + 1, … /2 – 1}. Therefore,

recovering b can be seen as a closest point lattice search since b is a point in the N

dimensional complex lattice generated by the columns of .

The underlying principle behind lattice-aided detection is the creation of an effective

channel matrix , whose columns are more orthogonal than . For any unimodular

matrix T, the effective channel model becomes:

=

= , (2-20)

where the effective channel matrix is , and the effective channel input is

. Since and b contain only complex integers, the elements of are also

complex integers.

When DF detection is applied to this new effective channel model, it is called the

lattice-aided decision-feedback (LA-DF) detector. The LA-DF detector can be

implemented following the conventional DF process (2-2)−(2-4). First, the receiver

computes the QR decomposition of the effective channel matrix:

 = QDM, (2-21)

r

s 0.5 1 1–+() 1 … 1, ,[]T=

r̃ Hb w̃+

a 2c()⁄ s– w̃

r̃ r

q q q

H

H

H̃ H

r̃ HTT 1– b w̃+

H̃b̃ w̃+

H̃ HT=

b̃ T 1– b= T 1– b̃

H̃

23

where Q = [q1, … qM] is an M × N matrix with orthonormal columns, where D is a N × N

diagonal matrix with diagonal elements that are positive and real, and where M is a lower

triangular matrix with ones along the diagonal.

Following the QR decomposition, the receiver multiplies the effective channel output

by a front-end filter y = D−1Q* , which reduces to:

y = . (2-22)

Although n contains residual intersymbol interference, it is treated as noise. After this

front-end filter, the decision regarding is made after removing the interference due to

 according to:

, (2-23)

where is the element in the set Lk nearest x. The set Lk is defined as the subset

of all possible vectors whose first k − 1 elements are equal to , respectively.

Implementing the slicer function used in (2-23) is difficult because the set Lk can be large,

and it depends on the channel. Since the elements of are known to be integers, a

common simplification is to assume that the transmission alphabet is the set of complex

integers. This assumption causes only a small degradation in performance, and the slicer

function becomes a simple round:

, (2-24)

where = + independently rounds each part of y to the nearest integer.

r̃

Mb̃ n+

b̃k

b̃1 … b̃k 1–, ,

b̂k slicer yk mk j, b̂j

j 1=

k 1–

∑–

=

slicer x{ }

b̃{ } b̂1 … b̂k 1–, ,

b̃

b̂k yk mk j, b̂j

j 1=

k 1–

∑–=

y Re{ y } 1– Im{ y }

24

The final step of the LA-DF detector is to convert the decision about = T–1b into a

decision about a. To do so, first is multiplied by T, then the scaling and shifting

transformation is reversed. Since could be any complex integer, this conversion may

yield symbol decisions that do not belong to the alphabet A. To deal with this possibility

we append a conventional symbol slicer, yielding:

 = , (2-25)

where returns the element of A nearest each element of x.

So far we have described how to implement the LA-DF detector given the lattice-

reduction matrix T. But calculating T is a difficult problem in itself. In [49] an optimal

lattice-reduction technique that applies only to channels with two inputs was proposed.

The most popular lattice-reduction technique is the LLL algorithm [31][34][44][46]. A

pseudocode implementation of the LLL algorithm is given in Appendix C. Figure 2-4

illustrates the performance improvement attained using lattice reduction. The BER curves

for the linear and DF detectors combined with LLL lattice reduction are within 3 dB of

optimal performance.

In terms of complexity, the LA-DF detector is very similar to the DF detector. The

only significant difference is that the preprocessing complexity is greater for the LA-DF

detector since it involves calculating the lattice-reduction matrix T. The LA-DF detector is

implemented following the same process as the DF detector except that the symbol slicer

b̃

b̂

b̂k

â dec Tb̂ s+()2c{ }

dec x{ }

25

is replaced by a simple rounding operation. The only other differences are that the LA-DF

detector must perform an initial scale and shift of the channel output (2-18), and it maps its

decision vector back to the QAM alphabet (2-25).

2.5. Sphere Detection: Reducing the Complexity of the ML Detector

The brute-force ML detector (1-5) is impractical due to its exponential complexity.

The sphere detector is a better way to implement the ML detector whose average

complexity can have polynomial complexity [26]. The sphere detector was first applied

specifically to the real channel model of MIMO detection in [42] and [14], but it is

founded on earlier works [35][29][36]. It was applied to the complex MIMO channel

model in [27]. Instead of computing the costs of every possible decision vector, the sphere

5 10 15 20 25 30 3510−4

10−3

10−2

10−1

LINEAR
DF

LINEARDF

ML

LLL LATTICE
REDUCTION

NO LATTICE
REDUCTION

 Figure 2-4. Performance of the linear and DF detectors with and without
the help of LLL lattice reduction as averaged over 105 4-input
4-output Rayleigh-fading channels with 16-QAM inputs.

SNR (dB)

B
E

R

26

detector only computes the costs of decision vectors that lie within a hypersphere centered

on the channel output. The key to the complexity reduction achieved by the sphere

detector is its management of the radius of this hypersphere.

The sphere detector begins in the same way as the DF detector, that is by computing

the QR decomposition of the channel (2-1). Just like the DF detector, the sphere detector

may be applied to an effective channel model where the columns of the channel matrix

have been permuted (2-9) [1][13], or the lattice generated by the channel matrix has been

reduced (2-20) [1]. However, if the sphere detector is applied to the MMSE channel model

(2-15) [13], it only approximates the ML detector. For simplicity, we describe the sphere

detector using the original channel model (1-1), with the understanding that this sphere

detector can also be applied to the effective channel models (1-3), (2-9), (2-15), and (2-

20).

The MIMO detection problem may be mapped onto a tree where each possible symbol

vector, ∈ AN, defines a unique leaf node, and the tree has a level for each of the N

symbols in the vector . The MIMO detector’s job is to find the path from the root node

of the tree to the “best” leaf node, which is the leaf node with minimum mean-squared

error (MSE) || r − H ||2. Each branch leading from the root node towards a leaf node

corresponds to choosing one symbol in the symbol decision vector .

The second step of the sphere detector is also the same as for the DF detector; it

applies a front-end filter to the channel output to triangularize the channel (2-2):

y = Ma + D−1Q*w . (2-26)

After channel triangularization, the cost function of the leaf nodes, or candidate decision

vectors, is written as:

ã

ã

ã

ã

27

|| r − H ||2 = D2|| y − M ||2. (2-27)

In order to implement classical tree-search algorithms, we must assign a cost to each

branch in the tree. The triangular structure of M makes this possible. Specifically, let the

symbols define a path through the tree to a node at the k-th level. Using this

notation, specifies a branch connecting nodes on the k-th and (k + 1)-th levels of the

tree, whose cost can be expressed as:

= | yj – mj,m |2. (2-28)

Although a breadth-first search is possible [18], the depth-first tree search is preferable

due to its simplicity. Beginning from the root node it prunes (discards) branches and all

leaf nodes descending from branches when their cost exceeds the current radius of the

hypersphere R. Therefore, branches from the k-th level of the tree are pruned if > R.

Each time a leaf node is reached whose cost is less than the current radius of the

hypersphere, then R is set to this lower cost.

The choice of the initial radius of the hypersphere is critical to both the complexity and

performance of the sphere detector. If the initial radius is too small then the hypersphere

will not include the ML solution. On the other hand, the number of points that must be

searched inside the hypersphere increases as its radius increases. In reality, the number of

points inside the hypersphere is a random variable depending upon the channel and the

additive noise, and the sphere detector cannot guarantee that it will not search all possible

symbol vectors. Various methods of choosing the initial radius have been proposed in

[26][53]. Another approach is to choose a small initial radius, and increase it if the

hypersphere is empty. If the costs of the branches calculated for partial paths through the

tree are stored, then no computations would need to be repeated after increasing the

ã ã

â1 … âk 1–, ,

âk

λ âk()
j 1…k=

∑
m j≤
∑ âm

λ âk()

28

radius. However, storing the costs of partial paths of unsuccessful searches requires an

exponential amount of memory. In [51], a compromise between reducing complexity by

storing all information and reducing memory by storing the information corresponding to

only the most promising paths was proposed.

If the initial radius is set to infinity, then the sphere detector is guaranteed to find the

ML decision vector. The expected complexity of the sphere detector search beginning

with an infinite initial radius depends on the distance of the first candidate vector found

from that of the ML decision vector. For this reason, if one could improve the quality of

the first candidate vector found, then the expected complexity of the sphere detector

would be reduced since the hypersphere would contain fewer candidates. Therefore, to

reduce complexity it is a good idea to explore the most likely branches first [9], in which

case the first candidate decision vector found by the sphere detector is the same as the

zero-forcing DF detector decision. From this viewpoint, it makes sense that in the same

way the BODF detector outperforms the DF detector, the sphere detector has lower

average complexity if its levels are sorted according to the BLAST ordering [13][53].

Recently it has been shown [38] that the channel permutation that minimizes the

complexity of the sphere detector depends not only on the channel matrix, but also on the

additive noise of the channel. Furthermore, given this optimal permutation matrix, the

complexity of the sphere detector’s tree search is dramatically reduced. Unfortunately,

calculating this permutation matrix is relatively complex, and it must be recomputed for

every channel output. Finding a low-complexity way to compute this permutation matrix

is an important open problem.

29

Finally, the sphere detector is usually implemented using the real channel model (1-3)

because that allows for the use of the Schnorr enumeration [36][13] which simplifies the

implementation. However, recent research suggests that using the complex channel model

will reduce complexity [7].

2.6. Approximating the ML detector

Besides the sphere detector, the tree-search view of the detection problem has also

spawned many approximations of the ML detector that reduce complexity

[5][28][19][12]. In [5], the detection problem is broken down into pieces to be solved by

sphere detectors. The decision regarding the first symbol comes from the best decision

vector at the T-th level of the tree. This interference due to the first symbol is cancelled out

leaving a tree with only levels. The decision regarding the second symbol comes

from the best decision vector at the T-th level of this new smaller tree. The process

continues until all decisions are made. In [28], a breadth-first tree search is used, but the

detector maintains only the T best paths. In [19], the ZF linear detector makes decisions

about the first T symbols, and the ML detector is used to make the remaining decisions.

Finally, [12] proposes a way to reduce the complexity when larger QAM alphabets are

used. It first implements the sphere detector assuming that the 4-QAM alphabet was used.

It then eliminates possible symbol decisions that are outside the quadrant of the symbols

found using the 4-QAM alphabet, and searches for the best decision vector from the

remaining candidates.

N 1–

30

Since the sphere detector complexity is reduced when the first candidate decision

vector found is nearer the ML decision vector, it has been proposed to apply the sphere

detector to the BLAST-ordered MMSE channel model (2-17) because the first decision

vector found in this case is that of the MMSE BODF detector [13]. This will not produce

the ML decision vector because of the residual ISI term that is characteristic of MMSE

detection. However, the performance loss relative to the ML detector is small [13].

2.6.1. Truncated Sphere-Detector

The sphere detector has low average complexity, but high worst-case complexity. A

practical system must be prepared to implement the detector for all possible channels, so

measuring the worst-case complexity of the sphere detector is more meaningful than

measuring its expected complexity. Unfortunately this means that the sphere detector is

prohibitively complex in many cases.

An intuitive way to limit the complexity of the depth-first sphere detector is to simply

abort the tree-search once a complexity limit has been exceeded, a technique we refer to as

truncated-sphere detection. Since the depth-first sphere detector continually updates a

candidate decision vector, once the complexity limit has been reached it could simply

return the best candidate it found − this is truncated-sphere detection. Since the depth-first

tree search goes directly to a leaf node corresponding to the decision vector of the DF

detector, even if the tree search is aborted it returns a reasonably reliable decision vector.

By implementing the truncated-sphere detector with a range of complexity thresholds we

can measure the performance-complexity trade-off of the sphere detector quantitatively.

31

The less the tree search is aborted, the closer the truncated-sphere detector

performance will be to ML performance. In order to determine an appropriate complexity

limit for the truncated-sphere detector, we built a histogram of the complexity of the

sphere detector over 105 4-input 4-output Rayleigh-fading channels with 16-QAM inputs.

The most multiplications used by the sphere detector during any one symbol period was

4514. The number of multiplications used by the sphere detector exceeded 1642, 656, and

230, with probabilities 10−4, 10−3, and 10−2, respectively. Figure 2-5 shows the BER

curves of the truncated-sphere detector using these complexity limits as well as the sphere

detector. These results demonstrate that even setting the complexity limit high enough that

the truncated-sphere detector differs from the sphere detector only one in a thousand

times, causes the amount of SNR required to reach BER = 10−3 to increase by about half a

dB. Increasing the complexity limit further causes even bigger performance penalties.

32

2.6.2. The ML-DF Detector

In order to achieve a compromise between the performance of the ML detector and the

low complexity of the BDF detector, it has been proposed to combine the two detectors

[11][30]. The ML-DF detector [11] uses the sphere detector to find the best path to the i-th

level of the tree, then uses decision-feedback detection to make decisions on the remaining

N − i symbols. The performance of the ML-DF detector decays as SNR−i, in other words it

has a diversity order of i, and the complexity is exponential in i. When , the ML-DF

11 13 15 17 19 21
10−5

10−4

10−3

10−2

10−1

 Figure 2-5. Performance of the truncated-sphere detector with various
complexity limits as averaged over 105 4-input 4-output
Rayleigh-fading channels with 16-QAM inputs.

SNR (dB)

B
E

R

TRUNCATED-SPHERE (Complexity Limit)

(230)

(656)

(1642)

ML ⇔ (4514)

i 1=

33

detector reduces to the DF detector, and when it reduces to the sphere detector.

Therefore, adjusting the parameter i allows the receiver to trade performance for

complexity.

i N=

34

CHAPTER 3

REDUCING COMPLEXITY OF THE

OPTIMALLY-ORDERED DF DETECTOR

The performance of the decision-feedback (DF) detector is strongly impacted by the

order in which the inputs are detected. Unfortunately, optimizing the detection order is a

difficult problem that often dominates the overall receiver complexity. It is common and

practical to define as optimal the detection order that maximizes the worst-case post-

detection SNR. This ordering, known as the BLAST ordering, approximately minimizes

the joint error probability of the DF detector. The DF detector that uses this BLAST

ordering is known either as the optimally-ordered or BLAST-ordered decision-feedback

(BODF) detector. The BLAST-ordering algorithm of [23] uses repeated computations of a

matrix pseudoinverse to find this ordering with a complexity of O(N 4), where N is the

number of channel inputs. Other algorithms that compute the BLAST ordering with

complexity O(N4) have also been proposed: the post-sorting algorithm of [48], the

decorrelating algorithm of [50], the square-root algorithms of [25] and [52], and the

recursive algorithm of [3].

In [16] an architecture for implementing the DF detector based on linear prediction of

the noise was presented. The noise-predictive DF detector consists of a linear detector

followed by a linear prediction mechanism that reduces the noise variance before making

a decision. In this paper we propose a low-complexity technique for determining the

BLAST symbol ordering that is facilitated by the noise-predictive DF detector. The

35

resulting noise-predictive BLAST-ordered DF (NP-BODF) detector is mathematically

equivalent to the BLAST-ordered DF (BODF) detector [23]. However, the NP-BODF

detector is less complex than the lowest-complexity BODF detector previously reported

[50]. In fact, if the linear detection filter is already known, the NP-BODF detector requires

roughly half the preprocessing complexity required by other BODF detectors. A key

advantage of the noise-predictive approach is that it allows existing systems that use linear

detection to be transformed (upgraded) into BODF detectors with the addition of

relatively simple processing.

In this chapter, we also derive the minimum-mean-squared-error (MMSE) version of

the noise-predictive DF detector for MIMO channels. We show that our novel ordering

algorithm is easily modified to find the MMSE BLAST ordering.

The outline of this chapter is as follows. Section 3.1 describes the zero-forcing noise-

predictive DF detector of [16]. Section 3.2 describes a low-complexity implementation of

the NP-BODF detector. Section 3.3 derives the MMSE noise-predictive DF detector and

describes how to find the corresponding BLAST ordering. Section 3.4 describes practical

implementation issues for the BODF detector. Finally, Section 3.5 compares the

complexity of the NP-BODF detector with previously proposed implementations of the

BODF detector.

36

3.1. ZF Noise-Predictive DF Detection

We now derive an alternative implementation of the ZF-DF detector based upon linear

prediction of the noise, as first proposed in [16]. Figure 3-1 shows the block diagram of

the zero-forcing noise-predictive DF (ZF-NP-DF) detector which employs this linear-

prediction strategy; the filters ci and pi,j will be defined shortly. The notion of ordering

(the permutation block) is neglected momentarily by assuming an identity permutation.

The starting point for the ZF-NP-DF detector is the ZF linear detector [41], which

essentially inverts the channel by computing y = Cr, where C is the channel

pseudoinverse:

C = (H*H)–1H*. (3-1)

In Figure 3-1, ci denotes the i-th row of C. From (2-1), the output of this filter is free of

interference:

y = a + n , (3-2)

where the noise n = [n1, … nN]T = Cw is no longer white; its autocorrelation matrix is

Rnn = E[nn*] = σ2(H*H)–1.

The correlation of the noise can be exploited using linear prediction to reduce its

variance. If the first elements of the noise vector were known, we could form an

estimate of the i-th element ni and subtract this estimate from yi to reduce its variance.

Specifically, given {n1, … ni – 1}, a linear predictor estimates ni according to:

 = pi,j nj , (3-3)

or equivalently = Pn, where P is a strictly lower triangular prediction filter whose

element at the i-th row and j-th column is pi,j. This process is complicated by the fact that

i 1–

n̂i

n̂i
j i<

∑

n̂

37

the receiver does not have access to ni directly, but rather to the sum yi = ai + ni. However,

as shown in Figure 3-1, the decision about ai can be subtracted from yi to yield ni as long

as the decision is correct.

Let us define the total MSE as E[|| – n ||2] = E[| – ni|
2], which measures the

quality of the prediction. As shown in [8], this total MSE is minimized by the following

prediction filter:

P = I – M , (3-4)

where M is defined by the QR decomposition of (2-1). Having thus defined the prediction

coefficients, the ZF-NP-DF detector of Figure 3-1 can be summarized succinctly by the

following recursion:

c3

+
–

+
–

+
–

– –

+
–

yi1

yi2

yi3

r
…

c1
y1

P
E

R
M

U
TA

T
IO

N

 Figure 3-1. The noise-predictive DF detector.

p2,1

…

…

â i1

âi2

âi3+

y2

y3

p3,1 p3,2

c2

n̂
i

∑ n̂i

38

= dec yi – pi, j(yj –) . (3-5)

We now show that the ZF-DF detector (2-4) and the ZF-NP-DF detector (3-5) are

equivalent. Substituting (3-2) and (3-4) into (3-5) yields the following for the noise-

predictive implementation:

= dec ai + mi,jcjw – mi,j(– aj) , (3-6)

where we exploited the fact that mi,i = 1 and pi,j = –mi,j when j < i, and where we

substituted nj = cjw. On the other hand, for the conventional implementation, substituting

(2-3) into (2-4) gives:

= dec ai + qi*w ⁄ di,i – mi,j(– aj) . (3-7)

The conventional and noise-predictive detectors are equivalent when equations (3-6) and

(3-7) are identical, or when:

mi,jcj = qi* ⁄ di,i . (3-8)

In matrix form, (3-8) simplifies to:

MC = D–1Q* . (3-9)

But since:

MC = M(H*H)–1H*

= M(M–1D–2M–*)H*

= D–1Q* , (3-10)

we conclude that the conventional ZF-DF detector and the ZF-NP-DF detector are indeed

equivalent.

âi {
j i<

∑ âj }

âi {
j i≤

∑
j i<

∑ âj }

âi {
j i<

∑ âj }

j i≤
∑

39

3.2. Optimally-Ordered Noise-Predictive DF Detection

To implement the ordered ZF-NP-DF detector of Figure 3-1, the receiver must first

calculate the channel pseudoinverse C, the symbol detection order, and the linear

prediction filter P. In this section we show how to calculate both the optimal detection

order and the prediction filter given knowledge of the channel pseudoinverse.

We first describe a low-complexity algorithm for finding the best (BLAST) detection

order. As implied by Figure 3-1, this sorting algorithm occurs after y = Cr has been

calculated. The permutation in the block diagram of Figure 3-1 gives the detector the

flexibility to use any symbol detection order, but in this paper we assume that the BLAST

ordering is used. Let {i1, i2, … iN} denote the BLAST ordering, a permutation of the

integers {1, 2, … N} such that ik denotes the index of the k-th symbol to be detected.

The noise-predictive view of the DF detector leads to a simple algorithm for finding

the BLAST ordering. As proven in [22], the BLAST ordering can be found in a recursive

fashion by choosing each ik so as to maximize the post-detection SNR of the k-th symbol,

or equivalently minimize its MSE. Specifically, because the MSE for the first detected

symbol is σ2|| ci1
||2, we have:

i1 = || cj || 2. (3-11)

In other words, the channel pseudoinverse row with the smallest norm determines which

symbol to detect first. Once i1 is chosen, and assuming i1
 is correct, the MSE for the

second symbol is:

E[|ni2
– i2

|2] = E[|ci2
w – p2,1ci1

w |2]

= σ2|| ci2
– p2,1ci1

||2. (3-12)

argmin
j ∈{1, … N}

â

n̂

40

When the prediction coefficient p2,1 is chosen to minimize the above MSE, the term p2,1ci1

reduces to the projection of ci2
 onto the subspace spanned by ci1

, which we denote as i2
.

Hence, the optimal i2 satisfies:

i2 = || cj – j||
2. (3-13)

Repeating the above procedure recursively leads to the following simple and succinct

procedure for finding the BLAST ordering:

ik = || cj – j||
2, (3-14)

where j denotes the projection of cj onto the span of {ci1
, … cij – 1

}. This is a key result

that is the basis of the noise-predictive implementation of the BLAST ordered DF

detector. In words, finding the BLAST ordering amounts to choosing the rows of the

channel pseudoinverse, where the best choice for the k-th row is the unchosen row that is

closest to the subspace spanned by the rows already chosen.

A computationally efficient implementation of the sorting algorithm of (3-14) is given

in Figure 3-2. It is based on an adaptation of the modified Gramm-Schmidt (MGS) QR

decomposition [24]. The algorithm accepts the channel pseudoinverse C as an input, and it

produces the optimal ordering {i1, … iN}. The MGS procedure of the sorting algorithm

operates on the rows of C, {ci1
, … ciN

}. During the first iteration (j = 1), Line 4 chooses the

row nearest to the null space. Then, Line 10 removes the portions from the remaining rows

of C that are parallel to ci1
. Therefore, in the next iteration (j = 2) each of the candidate

rows of C is orthogonal to ci1
. Consequently, the remaining row closest to the subspace

ĉ

argmin
j ≠ i1

ĉ

argmin
j ∉{i1, … ik – 1}

ĉ

ĉ

41

spanned by the previously chosen row is simply the row with minimum norm. As before,

Line 10 ensures that the remaining rows of C are orthogonal to ci2
. The iterations continue

the BLAST ordering is determined.

Close inspection of the algorithm in Figure 3-2 indicates that it is functionally

equivalent to an upper triangular sorted-QR decomposition [48]. Figure 3-3 gives the

pseudocode for the sorted-QR decomposition that implements the exact same sort. The

sorted-QR decomposition computed in Figure 3-3 can be described as:

C*Π = QU, (3-15)

where U is assigned from the R output of the sorted-QR decomposition. Since the QR

decomposition is unique, comparing (3-15) to (2-10) indicates that U is also equal to the

 Figure 3-2. The noise-predictive sorting algorithm.

Function NPsort.
Input: C, Output: {i1, i2, … iN}

1. U = {1, 2, … N} = the set of unchosen rows.
2. for j = 1 to N, , end

3. for j = 1 to N,

4. ij = ek

5. U =U – i ; remove chosen row from U.
6. fij,j =

7. cij
= cij

⁄ fij,j

8. for k ∈ U
9. fk,j = ck cij

*
10. ck = ck – fk,j cij

11. ek = ek – |fk,j|
2

12. end

13. end

ej cj k,
2

k 1…j=
∑=

argmin
k ∈

eij

42

inverse of L* = M*D*, where D and M are defined from the QR decomposition of H (2-

10).

The fact that the BLAST sort can be implemented as a sorted-QR decomposition leads

to a conceptually simple way to compute the prediction matrix P = I – M (3-4). The matrix

D–1 is actually a by-product of the sorted-QR decomposition of Figure 3-3 because the

diagonal elements of D–1 are just the diagonal elements of U. This means that

 and the prediction matrix is computed as:

P = I – D–1(U–1)*. (3-16)

Implementing the BLAST-sorting algorithm using the sorted-QR decomposition as in

Figure 3-3 makes it easy to see that the same sorting algorithm can be realized using any

 Figure 3-3. The noise-predictive sorting algorithm using the
upper triangular sorted-QR decomposition.

Function SortedQRUPPER
Input: Q = C*, Output: Q, R, Π, and D

1. Q = C*, Π = I, R = 0NxN

2. for j = 1 to N, , end

3. for j = 1 to N,

4. i = ek

5. Swap i-th and j-th columns of Q, R, and Π
Swap i-th and j-th elements of e

6.

7.

8. for k = j+1 to N,

9.

10.

11.

12. end

13. end

ej qk j,
2

k 1…j=
∑=

argmin
k = j to N

rj j, ej=

qj qj rj j,⁄=

rj k, qj
∗qk=

qk qk rj k, qj–=

ek ek rj k,
2–=

M D 1– U 1–()∗=

43

implementation of the QR decomposition. The MGS implementation we have shown here

is only one possibility. Two other well-known implementations of the QR decomposition

include using Householder or Givens rotations [24].

In summary, given the channel pseudoinverse, the zero-forcing NP-BODF detector

implementation has four steps. First, the channel pseudoinverse is applied to the received

vector. Next, the BLAST symbol order is calculated using the sorted-QR decomposition

of the conjugate transpose of the channel pseudoinverse. Then, the linear prediction filter

is calculated from the output of the sorting algorithm. After these calculations the detector

can be implemented using (3-5), as illustrated in Figure 3-1.

3.3. Noise-Predictive MMSE DF Detection

The ZF-DF detector cancels the interference completely without regard to noise

amplification. The MMSE-DF detector improves on this strategy by finding the optimal

balance between interference cancellation and noise reduction that minimizes the total

MSE [2]. In this section we derive a noise-predictive implementation of the BLAST-

ordered MMSE-DF detector.

Like the ZF-DF detector, the MMSE-DF detector can also be implemented as a

cascade of a linear filter and a noise-predictive mechanism, so that the basic architecture

of Figure 3-1 applies to both the zero-forcing and MMSE versions of the DF detector. But

instead of the channel pseudoinverse, the noise-predictive MMSE DF detector begins with

the MMSE linear detection filter [41]:

C = H*, (3-17)

where:

R̃ 1–

44

 = H*H + σ2I . (3-18)

This choice for C minimizes the total MSE E[|| ε ||2], where ε = Cr – a is the vector of

errors after the linear filter. Unlike the ZF case, this error vector contains residual

intersymbol interference (ISI) as well as noise:

ε = (H*H + σ2I – σ2I)a + Cw – a

 = –σ2 a + Cw . (3-19)

In the following we continue to use our “noise”-predictive terminology, even though

strictly speaking the “noise” being predicted is ε, which contains residual ISI as well as

noise.

Let = Pε denote an estimate of ε based on linear prediction. Let e = (I – P)ε denote the

error in this estimate. We now derive the strictly lower-triangular linear prediction filter P

that minimizes the total MSE E[||e ||2]. From (3-19), the autocorrelation matrix

Rεε = E[εε*] of ε can be written as:

Rεε = + σ2CC*

= + σ2 (H*H + σ2I – σ2I)

= . (3-20)

Since is Hermitian and positive definite, Rεε has the following Cholesky factorization:

Rεε = –*, (3-21)

where is a lower triangular matrix with diagonal elements of one, and where is a

real diagonal matrix with positive diagonal elements. The total MSE after linear prediction

is related to Rεε by:

R̃

R̃ 1–

R̃ 1–

ε̂

σ4
R̃ 1– R̃ 1–

σ4
R̃ 2– R̃ 1– R̃ 1–

σ2
R̃ 1–

R̃

σ2M̃ 1– D̃ 2– M̃

M̃ 1– D̃ 2–

45

E[|| e ||2] = trace{(I – P)Rεε(I – P*)}. (3-22)

It is easy to show [8] that the best choice for (I – P) cancels :

I – P = . (3-23)

Therefore, the effective front-end filter of the MMSE noise-predictive DF detector is

given by:

(I – P)C = H*

= –*H*. (3-24)

This forward filter is identical to the forward filter of the conventional MMSE-DF

detector defined in [15]. With this forward filter, the corresponding feedback filter is –P,

which is identical to the feedback filter of the conventional MMSE-DF detector defined in

[15]. Therefore, we conclude that the noise-predictive MMSE-DF detector is equivalent to

the conventional MMSE-DF detector.

Just as for the ZF-DF detector, the performance of the MMSE-DF detector is improved

if the detection order of the symbols is chosen to minimize the maximum MSE. However,

the ordering problem for the noise-predictive MMSE-DF detector is complicated by the

fact that the “noise” includes residual ISI. For convenience, we define an augmented

matrix B:

B = C , (3-25)

so that Rεε = σ2BB*. Let bj be the j-th row of the matrix B. From (3-20), the MSE for the

first detected symbol is equal to [Rεε]i1,i1= σ2|| bi1
||2. Therefore, we choose the symbol

with minimum MSE by:

M̃ 1–

M̃

M̃R̃ 1–

D̃ 2– M̃

 σR̃ 1–

46

i1 = || bj ||2 . (3-26)

After i1 is chosen, and assuming is correct, the MSE for the second symbol is:

(3-27)

Let be the j-th row of the matrix . Then by substituting from (3-19), the MSE for the

second symbol becomes:

 =

=

= , (3-28)

where the last equality in (3-28) follows from straightforward algebraic manipulation.

When the prediction coefficient is chosen to minimize the MSE, the term

reduces to the projection of onto the subspace spanned by , which we denote as .

Hence, the optimal i2 satisfies:

i2 = || – ||2. (3-29)

The above procedure can be repeated recursively to determine the BLAST ordering. In a

fashion reminiscent of the ZF sorting algorithm (3-14), the above procedure is succinctly

described by the following recursive sorting algorithm:

ik = || – ||2, (3-30)

where denotes the projection of bj onto the span of { , … }.

argmin
j ∈{1, … N}

âi1

E εi2
ε̂i2

– 2[] E εi2
p2 1, εi1

– 2[]=

r̃j R̃ 1–

E εi2
ε̂i2

– 2[] E ci2
w σ2r̃i2

a– p2 1, ci1
w– σ2p2 1, r̃i1

a+ 2[]

σ2 ci2
p2 1, ci1

– 2 σ4 r̃i2
p2 1, r̃i1

– 2+

σ2 bi2
p2 1, bi1

– 2

p2 1, p2 1, bi1

bi2
bi1

bi2

argmin
j ≠ i1

bj b̂j

argmin
j ∉{i1, … ik – 1}

bj b̂j

b̂j bi1
bij 1–

47

The MMSE sorting algorithm (3-30) just described is identical to the ZF sorting

algorithm (3-14), except that cj and have been replaced by bj and , respectively. As a

result, we need not derive an implementation of the MMSE ordering algorithm from

scratch; it is realized by the NPsort function of Figure 3-2 when the augmented matrix B is

input instead of the channel pseudoinverse.

When σ = 0, C reduces to the channel pseudoinverse, and the matrix has no

impact on the sorting algorithm. Therefore, as expected, the MMSE sorting algorithm

reduces to the ZF sorting algorithm when the noise is zero.

3.4. Noise-Predictive BODF Detection Given the Channel Matrix

If the receiver is given the channel matrix H beforehand instead of the linear filter C,

the implementation of the NP-BODF detector can be simplified. The previous two

sections have shown in detail that given the factorization of the autocorrellation of the

noise Rεε = σ2BB*, computing the upper-triangular sorted-QR decomposition of B* yields

the optimal ordering for the MMSE BODF detector. The simplification of the BLAST sort

we discuss in this section is based on the fact that the factorization of Rεε is not unique. We

describe the simplification only in terms of the MMSE BLAST sort because it includes the

ZF BLAST sort as a special case.

The definition of B given in (3-25) is not the only factorization of Rεε. Recall from (3-

18) and (3-20), that Rεε is defined as:

Rεε = σ2(H*H + σ2I)−1. (3-31)

This autocorrellation matrix can be written as a function of as follows:

ĉj b̂j

σR̃ 1–

H

48

Rεε = σ2(*)−1, (3-32)

where is the extended channel matrix used to create the MMSE channel model (2-14):

. (3-33)

The QR decomposition of gives another valid factorization of Rεε. The lower-

triangular QR decomposition of is written as:

 = QDM, (3-34)

where Q is an (M + N) × N matrix with orthonormal columns, where D is an N × N

diagonal matrix with diagonal elements that are positive and real, and where M is a lower

triangular matrix with ones along the diagonal. Rεε can now be decomposed as follows:

Rεε = σ2(M*D*DM)−1. (3-35)

Given this new decomposition, U = (M*D*)−1 can replace B* as the input to the NPsort

function that calculates the MMSE BLAST ordering. This simplifies the implementation

of the BLAST sort because U is easier to calculate than B since U has smaller dimensions

than B, and U is triangular. Figure 3-4 gives the pseudocode to implement the MMSE

BLAST sort starting from .

3.5. Comparing Different DF Implementations

Figure 3-4 gives the pseudocode for three different ways to implement the MMSE

BLAST sort starting from . After the BLAST sorting is done, the BODF detector can be

implemented using either the noise-predictive approach (see Figure 3-1), the conventional

approach (see Figure 2-1), or the recursive approach (see Figure 2-2). The noise-

predictive decision-feedback (NP-DF) detector can be implemented as in Figure 3-1 after

H H

H

H H
σINxN

=

H

H

H

H

H

49

computing the prediction filter P and the forward filter F = . The conventional DF

detector requires a different forward filter F, and the interference-cancellation matrix M

(2-1), while the recursive DF detector needs only its forward filter F. Figure 3-4 gives the

pseudocode to implement each of these three versions side-by-side. The three BODF

detector implementations are identical until the fifth line of pseudocode. The modified-

DDF detector [50] uses the conventional DF implementation, while the original BLAST-

ordered-DF detector [23] uses the recursive-DF implementation albeit with a different

BLAST-ordering algorithm.

Table 3-1 and Table 3-2 give the number of real multiplications required to implement

the preprocessing complexity of the three BODF detector implementations. The matrix Θ

from Line of 4 Figure 3-4 could have anywhere from zero to complex entries

depending on the permutation calculated by the sorted-QR decomposition. This means

that the preprocessing complexity of the BODF detector also depends on the permutation.

We assume the worst-case scenario when Θ has no zero entries. Table 3-2 shows that the

recursive implementation is the least complex of the three, requiring fewer

multiplications than the noise-predictive implementation.

R̃ 1– H∗

MN

N2

Table 3-1: Preprocessing complexity of the BLAST sorting algorithm in real
multiplications (See Figure 3-4).

MMSE ZF

Line 1

Line 3 none

Line 4

Total (M=N)

3MN2 N3 MN+ + 3MN2 MN+

0.5N3 N2 1.5N–+

3N3 0.5N2 0.5N– 1–+ 3N3 0.5N2 0.5N– 1–+

7N3 1.5N2 0.5N– 1–+ 6.5N3 2.5N2 2N– 1–+

50

The noise-predictive implementation of the BODF detector is most beneficial when

the receiver is given the forward filter before detection begins. For example, if an existing

system is being upgraded and hardware has already been developed to compute the

forward filter, or the receiver estimates the forward filter directly. In this case, the BLAST

sorting algorithm can avoid the initial QR decomposition all together, but it must invert U

(3-16) which requires real multiplications. The sorted-QR

 Figure 3-4. Three different implementations of the MMSE BLAST-ordered DF detector.

MMSE BLAST-ordered DF

1. [Q, L] = QRlower()

2. = first M rows of Q

3. Compute

4. [Θ, U, Π] = sortedQRupper(()*)

5. = diag(U)

H

Q̃

L 1–

L 1–

D 1–

6. P = I − (Θ*)LΠ

7. F = *

8. y = Fr

9. Implement DF
as in Figure 3-1

D 1–

L 1– Q̃

6. M = (Θ*)LΠ

7. F = (Θ*) *

8. y = Fr

9. Implement DF
as in Figure 2-1

D 1–

D 1– Q̃

6. skip to 7

7. F = (Θ*) *

8. skip to 9

9. Implement DF
as in Figure 2-2

D 1– Q̃

Noise-Predictive DF Conventional DF Recursive DF

Table 3-2: Total complexity of the BLAST sorting algorithm in real multiplications (See Figure 3-4).

Noise-Predictive DF Conventional DF Recursive DF

Lines 1-5

Line 6 none

Line 7

Lines 8-9 not counted not counted not counted

Total (M=N)

7N3 1.5N2 0.5N– 1–+ 7N3 1.5N2 0.5N– 1–+ 7N3 1.5N2 0.5N– 1–+

1.5N3 2.5N2+ 1.5N3 2.5N2+

1.5MN2 0.5MN+ 3MN2 3MN2 2N2+

10N3 4.5N2 0.5N– 1–+ 11.5N3 2N2 0.5N– 1–+ 10N3 3.5N2 0.5N– 1–+

0.5N3 N2 1.5N–+

51

decomposition is also slightly more complex at real multiplications

since its input is no longer lower triangular. In the end, if the receiver that is given

the forward filter requires real multiplications to compute the BLAST

ordering.

Another example when the noise-predictive implementation allows for reduced

complexity is in implementing the ZF version of the BLAST-ordering algorithm and

. In this case, the LU decomposition [24] can compute the inverse of the channel

matrix with only real multiplications. In this case, the total number of real

multiplications needed to implement the BLAST-ordering algorithm is .

The original BLAST algorithm proposes an implementation of the zero-forcing

BLAST sort that requires real multiplications when

 [23]. Appendix A gives the pseudocode for a modified version of this original

BLAST algorithm that requires only real

multiplications. We refer to this algorithm as the iterative-QR sorting algorithm since it

iteratively implements N QR decompositions. The complexity of this algorithm grows as

O(N4), whereas the complexity of the algorithms in Figure 3-4 grow as O(N3). However,

for small values of N the iterative-QR algorithm has low complexity.

Figure 3-5 illustrates the number of real multiplications required to implement the

preprocessing of the zero-forcing BODF detector using four approaches: the noise-

predictive algorithm given the channel pseudoinverse, the noise-predictive algorithm

using the LU decomposition to calculate the channel pseudoinverse, the recursive

algorithm, and the iterative-QR algorithm. Recall that each of these approaches are simply

different ways to implement the same detector. In other words, each approach achieves

3MN2 MN N2 N–+ +

M N=

6.5N3 6N2 2.5N–+

M N=

N3 N–

7.5N3 6N2 3.5N–+

13N4 8⁄ 73N3 12⁄ 23N2 8⁄ 7N 12⁄–+ +

M N=

9N4 8⁄ 53N3 12⁄ 15N2 8⁄ 5N 12⁄–+ +

52

exactly the same performance. As a result the distinguishing criteria among these

algorithms is the number of computations they require. None of the algorithms addresses

estimation directly, so in this comparison the complexity of estimation is neglected.

However, it is possible to estimate C directly [4][41], and the complexity of the noise-

predictive algorithm that assumes this is shown.

Figure 3-5 demonstrates that the least complex implementation of the zero-forcing

BODF detector that is given H, is the iterative-QR algorithm if N ≤ 3, and the noise-

predictive algorithm if N > 3. On the other hand, the noise-predictive algorithm given C is

12% less complex than when given H for the case N = 6.

ITERATIVE-QR

RECURSIVE

2 3 4 5 6

102

103

3000

60

NOISE-PREDICTIVE

NOISE-PREDICTIVE
WITH LU DECOMPOSITION

GIVEN C

GIVEN H

NUMBER OF TRANSMIT ANTENNAS, N

N
U

M
B

E
R

 O
F

 R
E

A
L

M
U

LT
IP

LI
C

A
T

IO
N

S

 Figure 3-5. Complexity comparison for various BLAST-sorting algorithms for the
zero-forcing BODF detector, with M = N.

53

3.6. Chapter Summary

The noise-predictive DF detector consists of a linear detector and a linear prediction

mechanism that reduces noise variance. We showed that the noise-predictive view of the

DF detector leads to a simple and computationally efficient way of calculating the BLAST

detection ordering for both the MMSE and ZF versions of the DF detector. The noise-

predictive implementation makes it easy to upgrade an existing linear detector by

appending relatively simple additional processing. Furthermore, despite the fact that the

linear detector and this add-on processing may have been designed independently, the

overall complexity of the resulting noise-predictive BODF detector is lower than

previously reported BODF detectors.

54

CHAPTER 4

IMPROVING THE PERFORMANCE OF THE LINEAR DETECTOR

WITH LOW-COMPLEXITY

Many MIMO detectors have been proposed to close the performance and complexity

gaps between the linear and ML detectors. For example, the BLAST-ordered decision-

feedback (BODF) detector [23] can significantly outperform the linear detector. The

BODF detector may be implemented in two stages, where the first stage is the linear

detection filter [41][16], and the second stage is a noise-prediction mechanism that

reduces noise variance (see Chapter 3). Another low-complexity detector is the group

detector [30][40][11], which divides symbols into two groups, and then detects the first

group using ML detection. After cancelling the interference due to the first group of

symbols, the second group of symbols is detected using a suboptimal technique. Finally, in

contrast to the decision-feedback detector, the partial feedback multiuser detector of [17]

cancels the interference of only a subset of available decisions. It first divides the users

into groups according to their signal energies. Then, the detection strategy for each user

group is different, but a given user always uses every decision from stronger users for

interference cancellation.

In this paper we propose a new method for improving upon the linear detector called

the partial decision-feedback (PDF) detector. At very high data rates, where computations

are at a premium, even the BODF detector may be too complex to implement. In such

applications, the PDF detector offers a way to improve upon the linear detector with much

less additional complexity. Like the BODF detector, the first stage of the PDF detector is

55

also a linear detection filter. The second stage is a simplified noise-prediction mechanism

that attains most of the performance improvement achieved by the BODF detector, while

adding significantly fewer computations. In fact, in the limit of high signal-to-noise ratio

(SNR), the word-error rate of the PDF detector converges to that of the BODF detector.

The PDF detector can also be viewed as a variation of the group detector where the first

and second groups are both detected using linear detection. In this chapter we focus

specifically on the case where the first group contains only a single symbol. The PDF

detector differs from the partial feedback multiuser detector not only in how it orders the

users, but also because it removes the interference from only a subset of the stronger users.

The remainder of this chapter is organized as follows. In Section 4.1 we describe the

PDF detector. In Section 4.2 we show that the word-error probability of the zero-forcing

PDF detector approaches that of the BODF detector at high SNR. In Section 4.3 we

describe the complexity of the PDF detector. In Section 4.4 we compare the performance

and complexity of the PDF, BODF, and linear detectors. Finally, in Section 4.5 we make

concluding remarks.

4.1. Partial Decision-Feedback Detection

The PDF detector is defined by five steps, which are applied to the memoryless MIMO

channel (2-1) as outlined below:

Step 1. Apply a linear filter to the channel output r.

Step 2. Identify the index i of the symbol to detect first.

Step 3. Detect the i-th symbol by slicing the i-th output of the linear filter.

Step 4. Cancel the interference due to the i-th symbol.

56

Step 5. Detect the remaining symbols linearly.

A straightforward implementation of the zero-forcing PDF detector would use the i-th row

of the channel pseudoinverse to detect the i-th symbol, and the pseudoinverse of H(i) to

detect the remaining symbols, where H(i) is the submatrix created by swapping the first

and i-th columns of H then deleting the first column. However, in this section we propose

a lower complexity implementation of the PDF detector based on noise prediction. We

describe this noise-predictive implementation in a general way that applies to both its

zero-forcing (ZF) and minimum-mean-squared error (MMSE) versions.

Step 1: The PDF detector begins by applying the linear filter [41]

 to the channel output, where the parameter ∈{0, σ} determines

whether the ZF (= 0) or MMSE (= σ) version of the filter is implemented. The linear

filter can be expressed as C = L-1 *, where the matrices L and are defined by the

following QR decomposition of the extended channel matrix [6][25]:

. (4-1)

The (M + N) × N matrix Q, which satisfies Q*Q = I, can be further decomposed according

to [25]:

. (4-2)

so that is defined as the first M rows of Q. The N × N matrix L is lower triangular with

positive and real diagonal elements.

Applying the linear filter to the channel output yields y = Cr, which reduces to:

y = a − U*Ua + U* *w , (4-3)

C H∗H σ̂2+() 1– H∗= σ̂

σ̂ σ̂

Q̃ Q̃

H

σ̂I
QL=

Q Q̃

σ̂L 1–
=

Q̃

σ̂2 Q̃

57

where U = (L−1)*, and where we used the fact that *H = L − U. This is the desired

signal plus an effective noise:

y = a + n , (4-4)

where the effective noise n = [n1, … nN]T is no longer white; its autocorrelation matrix is

Rnn = σ2U*U, since * = I − U*U. Although n includes a residual interference term

in addition to the noise when ≠ 0, we continue to refer to it simply as noise.

Step 2: We propose choosing i as the symbol with the smallest noise variance, which

corresponds to the first index of the BLAST ordering. The noise variance of the j-th

symbol is proportional to the j-th diagonal element of the autocorrelation matrix Rnn, so

the index of the first symbol is chosen according to:

i = || uj ||2, (4-5)

where uj is the j-th column of U.

Step 3: The i-th symbol is detected by quantizing the i-th output of the linear filter to

the nearest symbol in the alphabet, = dec{yi}, where dec{x} rounds x to the nearest

element of A.

Step 4: Noise-predictive decision feedback is used to reduce the noise variance, and is

described by the following equation:

z = y − p(yi −), (4-6)

where p = [p1, … pN]T is a vector of prediction coefficients. The difference yi −

reduces to the noise ni whenever the decision is correct (= ai). The term pk(yi −) is a

prediction of nk that exploits the correlation between nk and ni. Since the i-th symbol is

detected first, it cannot benefit from noise prediction, meaning pi = 0.

Q̃ σ̂2

Q̃ Q̃ σ̂2

σ̂

argmin
j ∈{1, 2, … N}

âi

âi

âi

âi âi

58

The k-th prediction coefficient is chosen to minimize the mean-squared error (MSE)

for the k-th symbol (3-4), which reduces to the following when is correct:

E[| nk – pkni | 2] = E[| (uk*– pkui*)(*w – α2Ua) | 2]

= σ2|| uk – pkui ||2, (4-7)

where the second equality relies upon the fact that ∈{0, σ}, and we have substituted

nj = uj* *w – uj*Ua from the definition of n. From (4-7) we see that the noise

variance is minimized when the term pkui is the projection of uk onto the subspace

spanned by ui, so the k-th prediction coefficient is given by:

, k ≠ i. (4-8)

Step 5: The remaining symbols are detected by quantizing the elements of z from (4-

6):

= dec{ zk }, k ≠ i. (4-9)

Finally, the PDF detector’s hard decision regarding ak can be summarized succinctly

as:

= dec{yk – pk(yi −)}. (4-10)

Figure 4-1 shows the block diagram of the PDF detector after i and p have been

calculated. Figure 4-2 describes a computationally efficient implementation of the noise-

predictive PDF detector.

âi

Q̃

σ̂

Q̃ σ̂2

pk uk
∗ui ui

2⁄=

âk

âk âi

59

 Figure 4-1. Noise-predictive partial DF detector.

r âj i≠{ }

âi

−

+
C

−

+

y z

p

yi

 Figure 4-2. Noise-predictive partial DF detector algorithm.

Function PartialDF
Input: H, r, ; Output:

1. [Q, L] = QR()

2. U = (L−1)*

3. for j = 1 to N, ej = || uj ||
2, end

4. i = ej

5. = First M rows of Q.

6. y = U* *r

7. = dec{yi}

8. ni = yi –

9. for k ≠ i,

10. pk = uk*ui ⁄ei

11. = dec{yk – pkni}

12. end

σ̂ â

H

σ̂I

argmin
j ∈{1, 2, … N}

Q̃

Q̃

âi

âi

âk

60

4.2. Performance Analysis

We now argue that word-error rate (WER) of the zero-forcing PDF detector converges

to that of the zero-forcing BODF detector at high SNR. The key is that the error rate of the

first symbol detected dominates the WER of both detectors. We begin by considering the

probability of error for the first symbol compared to the probability of error for the

remaining symbols. Let Ej represent the event of an error on the j-th symbol detected, so

that E = Ej represents the occurrence of a word error. For the two detectors, the

probabilities of word error are given by the following expressions:

Pr[E | BODF] = Pr[E1| BODF] + Pr[| BODF]Pr[E | , BODF], (4-11)

Pr[E | PDF] = Pr[E1| BODF] + Pr[| BODF] Pr[E | , PDF] , (4-12)

where is the complement of E1, and we used the fact that

Pr[E1 | PDF] = Pr[E1 | BODF].

In the absence of error propagation, the symbol-error rate of the j-th symbol of the

BODF detector has diversity order M – N + j [33], meaning that it decays asymptotically

as SNR–(M – N + j). In (4-11), this means that Pr[E1 | BODF] decays as SNR–(M – N + 1),

and further that Pr[E | , BODF] decays as SNR–(M – N + 2), as argued in Theorem 1 of

[33]. Similarly, since Pr[E | , PDF] behaves like the WER of a linear detector applied

to an M × (N – 1) channel, it also decays asymptotically as SNR–(M – N + 2). Therefore,

the second terms in (4-11) and (4-12) converge to zero faster than the first terms:

, (4-13)

. (4-14)

N
j 1=∪

E1 E1

E1 E1

E1

E1

E1

Pr E1 BDF[]Pr E E1 BDF,[]
Pr E1 BDF[]

--
SNR ∞→

lim 0=

Pr E1 BDF[]Pr E E1 PDF,[]
Pr E1 BDF[]

--
SNR ∞→

lim 0=

61

In other words, the error rate of the first symbol dominates at high SNR. It follows that the

WER of the zero-forcing PDF detector converges to that of the BODF detector at high

SNR:

. (4-15)

4.3. Complexity

We quantify the complexity of the proposed detector by counting the number of real

multiplications per symbol period required to implement the algorithm described in

Figure 4-2. Complex multiplications are counted as three real multiplications, and the

squared absolute values of complex numbers are counted as two real multiplications.

Although this complexity measure disregards additions, divisions, and square-roots it is

still a reasonable measure of complexity since the number of multiplications dominates

the overall complexity. We assume that the channel estimate is updated every L symbol

periods. Thus, the total complexity per symbol period is the sum of the preprocessing

complexity divided by L plus the core-processing complexity.

For the implementation of the PDF detector proposed in Figure 4-2, the preprocessing

complexity includes lines 1-5, and 10. The core-processing complexity includes lines 6-8,

and 11. Continuing our view of the PDF detector as an add-on to the linear filter, we

consider only those computations it requires beyond the linear detector. Specifically, the

linear detector requires lines 1-2 and 6 of Figure 4-2 whether or not the PDF additional

processing is used. Therefore, the additional preprocessing complexity required by the

Pr E BDF[]
Pr E PDF[]

SNR ∞→
lim 1=

62

PDF detector are real multiplications in Line 3, and a maximum of

real multiplications in Line 10 when i = N. The additional core-processing complexity of

the PDF detector is only the real multiplications needed at Line 11.

4.4. Numerical Results

In this section, we compare the performance and complexity of the MMSE versions of

the linear, partial DF, and BODF detectors. We will show that the performance-complexity

trade-off depends on the dimensions of the channel, as well as the size of the input

alphabet. Although Section 4.2 predicts identical performance for the PDF and BODF

detectors at high SNR, we will see that there can be a significant gap at practical SNR.

However, even when the BODF detector significantly outperforms the PDF detector, the

PDF detector still offers a way for the receiver to significantly improve upon the

performance of the linear detector with a relatively small complexity increase. The SNR is

measured as the received signal energy per signaling interval divided by the one-sided

noise power spectral density at each receive antenna, divided by the number of bits per

symbol, SNR = E[||Ha ||2] / (E[||w ||2] log2|A|). We assume that the receiver has perfect

knowledge of the channel parameters H and σ2. We measure performance as the SNR

required to reach BER 10−3, and the complexity as the maximum number of real

multiplications per symbol period each detector may require.

The PDF detector has the greatest complexity reduction relative to the BODF detector

over fast-fading channels. For example, Figure 4-3 demonstrates the performance versus

complexity trade-off between the MMSE versions of the linear, PDF, and BODF detectors

for N × N channels with 16- and 64-QAM inputs, assuming that the channel estimate is

N2 3N2 2⁄ 5N 2⁄– 1+

3 N 1–()

63

updated every symbol period (L = 1). Figure 4-3 clearly demonstrates that most of the

BODF detector’s performance improvement over the linear detector is also achieved by

the PDF detector, but with only a fraction of the complexity increase. For example,

upgrading from the linear to BODF detector when N = 3 and the input alphabet is 64-

QAM reduces the necessary SNR by 3.9 dB, but requires 79 additional multiplications per

symbol period. On the other hand, upgrading from the linear to PDF detector reduces the

necessary SNR by 3.6 dB, while requiring only 22 additional multiplications per symbol

period. Therefore, in terms of the additional complexity required beyond that of an

existing linear detector, the PDF detector is 72% less complex than the BODF detector. In

terms of an absolute performance-complexity trade-off, the PDF detector performs 0.3 dB

worse than the BODF detector, but is 21% less complex.

We observe in Figure 4-3 that the PDF detector performs better relative to the BODF

detector for larger QAM alphabets and smaller numbers of antennas, and decreases

complexity more relative to the BODF detector as N increases. The performances gap

between the two detectors is smaller for larger alphabets because they require operating at

higher SNR, and Section 4.2 demonstrates that the performance of the PDF and BODF

detectors will converge at high SNR. For the same reason the performance gap between

the zero-forcing PDF and BODF detectors is significantly smaller than for the MMSE

versions of these detectors.

64

4.5. Chapter Summary

The partial decision-feedback detector combines the strategies of the BODF detector

and the linear detector. We have shown that when the goal is to upgrade the performance

of the linear detector, while keeping complexity low, the PDF detector offers an attractive

performance-complexity trade-off. Specifically, by feeding back only one decision, the

PDF detector incurs a small performance loss relative to the BODF detector. In addition,

the PDF detector is significantly less complex than the BODF detector. For example, for a

3-input 3-output Rayleigh-fading channel with 64-QAM inputs, the PDF detector is 21%

less complex than the BODF detector, yet suffers only 0.3 dB of penalty in SNR.

COMPLEXITY (REAL MULTIPLICATIONS PER SYMBOL PERIOD)

S
N

R
 T

O
 R

E
A

C
H

 B
E

R
 =

 1
0−

3
(d

B
)

 Figure 4-3. Performance versus complexity for the MMSE versions of the linear
detector and the noise-predictive PDF, and BODF detectors. Results
averaged over 105 N-input N-output Rayleigh-fading channels where
L = 1.

400 600 800 1000 120022

24

26

28

30

32

34

36

38

200

PDF

BODF

LINEAR

3×3

64-QAM

16-QAM

3×3
4×4

4×4 5×5

5×5

65

CHAPTER 5

THE CHASE FAMILY OF DETECTION ALGORITHMS

The large gap in both performance and complexity between the maximum-likelihood

(ML) and BLAST-ordered decision-feedback (BODF) detectors has motivated the search

for alternatives. The sphere detector is a computationally-efficient implementation of the

ML detector, and there has been extensive work to reduce its complexity as summarized in

Section 2.5. There is an important class of reduced-complexity detectors called list-based

detectors that adopt a two-step approach of first creating a list of candidate decision

vectors, and second choosing the best candidate as its final decision. Examples of list-

based detectors include [19][32][45][30]. The error-sensitive detector proposed in [19]

starts by looking at the output of a linear detector, and flags some of the transmitted

symbols as unreliable. It then enumerates the unreliable symbols while keeping the

reliable symbols fixed. The space-time Chase decoder of [32] is similar, except that it

identifies bits — not symbols — as being reliable or not. In [45], a technique that

generates its list using multiple lattice reductions and multiple zero-forcing (ZF) BODF

detectors was shown to closely approximate the ML detector. The parallel detector [30]

generates its list by implementing a separate low-complexity detector for each possible

value of the first symbol. Numerical results suggest that if the first symbol detected is

chosen so as to approximately minimize the probability of error for the remaining

symbols, then the parallel detector achieves full receive diversity.

66

This paper proposes a family of Chase detectors, which includes as special cases the

ML, BODF [23], ML-BODF [11], parallel [30], and partial decision-feedback (PDF)

detectors of Chapter 4. Thus, the Chase family provides a unified framework for

comparing a variety of existing detectors. Furthermore, we propose the B-Chase detector

as a new special case that performs well on fading channels. We will demonstrate that the

B-Chase detector can approach ML performance with less complexity than previously

reported detectors [13][11][30][46]. The B-Chase detector distinguishes itself from

previous list-based detectors [19][32][45][30] in the unique way it builds its list. We will

see that the B-Chase detector achieves better performance with significantly smaller

candidate lists, leading to a favorable performance-complexity trade-off.

The remainder of this chapter is organized as follows. In Section 5.1 we introduce the

Chase framework for defining detection algorithms, and show how existing detectors fit

into the framework. In Section 5.2 we propose a new instance of the Chase detector family

called the B-Chase detector. In Section 5.3, we describe a computationally efficient

implementation of the B-Chase detector. In Section 5.4 we propose another new instance

of the Chase detector family called the S-Chase detector. In Section 5.5 we present some

performance and complexity numerical results, and in Section 5.6 we make concluding

remarks.

67

5.1. Chase Detection: A General Framework

In this section we introduce the Chase detector, a general detection strategy for MIMO

channels modeled by (2-1) that reduces to a variety of previously reported detectors as

special cases. The Chase detector defines a simple framework for not only comparing

existing MIMO detection algorithms but also proposing new ones. Specifically, a Chase

detector is defined by five steps, as illustrated in Figure 5-1, and as outlined below:

Step 1. Identify i ∈ {1, … N}, the index of the first symbol to be detected.

Step 2. Generate a sorted list [s1, … sq] of candidate values for the i-th symbol,

defined as the q elements of the alphabet nearest to yi, where

y = (H*H + I)−1H*r is the output of either a ZF (= 0) or MMSE

(= N0) linear filter.

Step 3. Generate a set of q residual vectors {r1, … rq} by cancelling the

contribution to r from the i-th symbol, assuming each candidate from the

list is in turn correct:

rj = r − hisj . (5-1)

Step 4. Apply each of {r1, … rq} to its own independent subdetector, which

makes decisions about the remaining N – 1 symbols (all but the i-th

symbol). Together with sj, the j-th subdetector defines a candidate hard

decision regarding the input a.

Step 5. Choose as the final hard decision the candidate hard decision

{ , … } that best represents the observation r in a minimum mean-

squared-error sense:

σ̂2 σ̂

σ̂2

âj

â

â1 âq

68

= || r − H ||2 . (5-2)

The Chase detector is roughly analogous to its namesake, the well-known Chase

algorithm for soft decoding of binary error-control codes [10], but with the temporal

dimension replaced by the spatial dimension. The analogy is loose, but still useful. The

Chase algorithm begins by identifying the p least reliable bits of a received codeword, and

enumerates all 2p corresponding binary vectors while fixing the remaining more reliable

bits. This is analogous to Steps 1 and 2, except in Step 1, only one symbol is identified

instead of p, and in Step 2, only a subset of the most likely values are enumerated. The

Chase algorithm decodes each of the 2p binary vectors using a simple hard-decoding

algorithm, producing a set of candidate hard decisions for the codeword. This is analogous

to the cancellation and subdetection in Steps 3 and 4. Finally, the Chase algorithm chooses

the candidate codeword that best matches the received observations in a way precisely

analogous to that in Step 5.

To uniquely define an instance of the Chase detector requires that the following four

parameters be specified:

• A strategy for selecting i in Step 1.

• A list length q for Step 2.

â argmin
â1 …âq,{ }

âj

S
E

LE
C

T
 i

Step 1

 Figure 5-1. Block diagram of the Chase detector.

r
s1

s2

sq

i

−+

−
+

−
+…

r1

r2

rq

â

â1

âq

… argmin ||r − H ||2âj

hi

hi

hi

…

Step 2 Step 3 Step 4 Step 5

LIST
DETECTOR

FOR
SYMBOL i

â2

âj

SUBDETECTOR1

SUBDETECTOR2

SUBDETECTORq

69

• A filter type, ZF or MMSE, for Step 2.

• A subdetector algorithm for Step 4.

Table 5-1 summarizes how the ML, BODF, PDF, and parallel detectors may be specified

as Chase detectors using these four parameters. For example, the Chase detector reduces

to the ML detector when the subdetectors are themselves ML detectors, and the list length

is maximized. In this case, the choice of which symbol to detect first has no effect on

performance. On the other hand, the Chase detector reduces to the BODF detector when

the list length is one and the subdetectors are themselves BODF detectors. In this case, the

choice of which symbol to detect first is critical to performance. The parallel detector is

another Chase detector whose performance is highly sensitive to the choice of which

symbol to detect first. The last row of Table 5-1 describes a new detector that will be

proposed in the next section.

Table 5-1: Special cases of the Chase detector.

Detector First-Symbol Index
i

List Length q Filter type, Subdetector

ML any |A| ZF ML

BODF [22] ♦BLAST1 1 ZF or MMSE BODF

PDF ♦BLAST1 1 ZF or MMSE Linear

Parallel [30] using (5-9) |A| ZF any

B-Chase using (5-9) or (5-11) 1 ≤ q ≤ |A| ZF or MMSE BODF

S-Chase using (5-22) 1 ≤ q ≤ |A| ZF or MMSE Sorted-QR DF

σ̂

♦The index BLAST1 signifies the first index of the BLAST ordering [22].

70

5.2. The B-Chase detector: A New Chase Detector

In this section, we introduce the B-Chase detector, as summarized by the next-to-last

row of Table 5-1. The B-Chase detector is defined simply as a Chase detector that uses

BODF as a subdetector. The list length q can be any integer in the set {1, … |A|}, and the

filters can be ZF or MMSE. It remains to specify the key parameter, namely, the choice of

which symbol to detect first. In the remainder of this section we describe two selection

algorithms for selecting i in Step 1. Beforehand, we must derive the signal-to-noise ratio

(SNR) for each symbol in the B-Chase detector.

5.2.1. The SNR Gain of a List Detector

A list detector makes an error when the actual transmitted symbol does not appear

somewhere on the list. With this definition, increasing the length of the list leads to a

decrease in the probability of error. (Indeed, a maximal list length of |A| ensures that the

list detector never makes an error.) Effectively, increasing the list length leads to an SNR

gain.

We demonstrate the effective SNR gain of a list detector using the 4-QAM alphabet

{e± jπ/4, e±j3π/4} as an example. Without loss of generality, let a = e jπ/4 be the transmitted

symbol. The input to the list detector will then be yi = a + n, where n is noise. When the

list length is one, the list detector reduces to the conventional decision device, and makes

the correct decision when yi is in the first quadrant of the complex plane. If we decompose

yi = |y|e jφ, this is equivalent to saying |φ – π/4| < π/4, which happens with probability

1 – 2Q() + Q2(), where SNR = E[|a|2]/E[|n|2] is the SNR at the input to the list

detector, and where Q(x) = (2π)–1/2 exp(–t2/2)dt . Figure 5-2 illustrates the decision

SNR SNR

x

∞

∫

71

regions for the list detector with list lengths q of two and three. A list detector with q = 2

will be correct when yi lies in the half-plane |φ – π/4| < π/2, which happens with

probability 1 – Q(). Similarly, a list detector with q = 3 will be correct when

, which happens with probability 1 – Q2(). The probability of the

list detector being incorrect can therefore be approximated as Q(), Q(), and

Q() for q = 1, 2, and 3, respectively.

In general, the probability of error for the list detector can be approximately written as

, where is the effective SNR gain of the list detector. The above 4-QAM

example shows that the SNR gains of the list detector are , , and .

Since the list detector cannot be incorrect when q = 4, the SNR gain of the full-length list

detector is infinite, i.e. . Similar analysis shows that the SNR gains for 16-QAM

are , , , and ; while for 64-QAM they are ,

, , , and .

2SNR

φ π 4⁄– 3π 4⁄< SNR

SNR 2SNR

4SNR

Q
3γq

2SNR
A 1–

 γq

2

γ1
2 1= γ2

2 2= γ3
2 4=

γ4
2 ∞=

γ2
2 2= γ3

2 4= γ8
2 8= γ12

2 13.6= γ4
2 4=

γ8
2 8= γ16

2 18.8= γ32
2 38.7= γ48

2 58.1=

1 2⁄

 Figure 5-2. Decision regions (shaded) of the list detector for 4-QAM with different list
lengths. When a = e jπ/4 is transmitted, the output of the list detector
contains a if the output of the linear filter lies within the shaded region.

ℜℜ

ℑ ℑ

q = 2 q = 3

1

2

1 2⁄

1

2

72

5.2.2. The SNR of the B-Chase Detector

In this subsection we quantify the SNR of the N symbols for the B-Chase detector. We

begin by analyzing the output of the linear filter in Step 2 of the B-Chase detector, which

provides the input to the list detector. First, consider the QR decomposition of the

extended channel matrix [6][25]:

, (5-3)

where the columns of the (M + N) × N matrix Q are orthonormal, and where L is a lower

triangular N × N matrix with positive and real diagonal elements. The bottom N rows of Q

are the matrix [6].

In terms of the QR decomposition (2-1), the linear filter of Step 2 can be written as

U* *, where U* = , and where the matrix is defined as the top M rows of Q. The

output of this linear filter is thus y = U* *r, which reduces to:

y = a − U*Ua + U* *w

= a + n, (5-4)

where we used the fact that *H = L − U. Although n contains both noise and residual

ISI when ≠ 0, we continue to call it noise. Since ∈ {0, σ2}, the noise variance of the

i-th output of the forward filter is E[|ni|
2] = σ2|| ||2, where is the i-th column of U.

This can be seen from (5-4) since * + UU* = I.

The effective SNR for the symbol detected first, including the gain of the list detector,

is:

. (5-5)

H
H

σ̂I
QL= =

σ̂L 1–

Q L 1– Q

Q

σ̂2 Q

Q σ̂2

σ̂ σ̂2

ui ui

Q Q σ̂2

SNR1
i() γq

2

σ2 ui
2

-------------------=

73

A more convenient expression for , and for the SNRs of the remaining

symbols, is defined by a QR decomposition of the extended channel matrix whose

columns are permuted according to the detection order. Let Π(i) denote an N × N

permutation matrix that arranges the columns of such that the i-th column comes first,

and the remaining columns are arranged according to the BLAST ordering. Consider the

QR decomposition:

Π(i) = Q(i)L(i), (5-6)

where the columns of the (M + N) × N matrix Q(i) are orthonormal, and where L(i) is a

lower triangular N × N matrix with positive and real diagonal elements. The effective SNR

for the symbol detected first is:

. (5-7)

The final N − 1 symbols in the B-Chase detector when the i-th symbol is detected first do

not enjoy any list-detection gain. Therefore, their SNR can be expressed as:

, k = 2, …, N, (5-8)

where is the k-th diagonal of L(i).

5.2.3. B-Chase Selection

The choice of which symbol to detect first must balance two opposing goals. On the

one hand, we want to choose i so that the SNR of the first symbol SNR1
(i) is high, so that

the list detector is likely to be correct. Loosely speaking, SNR1
(i) is maximized by

choosing the column of H that is most orthogonal to the remaining columns. On the other

hand, we also want the subdetectors to see a well-conditioned channel so that the

SNR1
i()

H

H

H

SNR1
i() γq

2 l1 1,
i()()2

σ2
--------------------=

SNRk
i() lk k,

i()()2

σ2
---------------=

lk k,
i()

74

subdetector decisions are likely to be correct. Loosely speaking, this is accomplished by

choosing the column of H that is least orthogonal to the remaining columns. We now

describe two selection algorithms that strike a balance between these two opposing goals.

Selection Algorithm #1: The first selection algorithm we propose maximizes the

minimum SNR of the symbols. The proposed selection algorithm can be succinctly

defined using the SNR definitions given in (5-5) and (5-8) as follows:

i = min . (5-9)

When q = 1, so that = 1, this selection algorithm can be implemented by choosing the

column of U with minimum norm, as proven in [22]. On the other hand, when the list

length is maximized and , the selection algorithm reduces to the parallel selection

algorithm [30].

Implementing the selection algorithm (5-9) when q > 1 requires O(N4) computations.

This is because the QR decomposition (5-6) needs to be computed N times, where each

decomposition involves computing the BLAST ordering of an M × (N − 1) matrix.

Selection Algorithm #2: In order to avoid the large complexity of Selection

Algorithm #1, we propose approximating the SNR of the symbols inside the subdetectors.

First of all, if q = 1 we select the symbol with minimum noise variance, because this is

optimal [22]. On the other hand, if the list length is maximal (q = |A|), we select the

symbol with the largest noise variance because the list detector has an infinite SNR gain to

counteract the noise. When the list length is greater than one, but not maximal, we propose

selecting the symbol which maximizes the minimum of and . This approach

arg max
k ∈ {1, 2, ... , N}

γql1 1,
k() l2 2,

k() … lN N,
k(), , ,{ }

γq

γq
2 ∞=

SNR1
i() SNR2

i()

75

is justified by the fact that the smallest SNR inside the subdetector is most often ,

therefore serves as a rough approximation of the minimum SNR inside the

subdetector. This SNR can be easily calculated from the matrix U:

, (5-10)

where . Selection Algorithm #2 can be summarized as follows:

. (5-11)

Note that if q = 1, (5-11) reduces to choosing the column of U with minimum norm.

5.3. Implementing the B-Chase Detector

Figure 5-3 gives the block diagram of the proposed implementation of the B-Chase

detector. Figure 5-4 and Figure 5-5 give the pseudocode for a computationally efficient

implementation of the B-Chase detector. In this section we describe the algorithm in

detail. In Section 5.5, simulation results will show that the B-Chase detector achieves

good performance with low complexity compared to other MIMO detectors.

Step 1: The first step towards implementing the B-Chase detector is to select the

symbol to detect first according to (5-9) or (5-11). Selection Algorithm #1 can be

implemented directly once the squares of the diagonal elements of L(i) from (5-6) are

known. We will calculate these without computing the QR decomposition of (5-6)

directly. Observe that permuting the columns of by Π(i) corresponds to permuting the

SNR2
i()

SNR2
i()

SNR2
i() 1

σ2minj i≠ uj
2 gj i,

2–{ }
---=

gj i, uj∗ui ui⁄=

i

maxarg
k 1 … N, ,{ }∈ uk

2 q A=,

maxarg
k 1 … N, ,{ }∈ min

γq
2

uk
2

------------- 1
minj k≠ uj

2 gj k,
2–{ }

--,

 , else

=

H

76

 Figure 5-3. (a) Overall block diagram for the B-Chase detector.
(b) Block diagram for the DF subdetector when N = 3.

DF

–y

cj

m3,1

(b)
– –

b̂2 j,

b̂3 j,

b̂l

sl

M
U

LT
IP

LE
X

O
R

b̂1 j,

–

–

–
|•|2

D
E

M
U

LT
IP

LE
X

O
R

|•|2

|•|2

m3,2

m2,1

d1,1
2

d2,2
2

d3,3
2

Steps 3 & 4

s1

s2

sq

SE
LE

C
T

i

i

…

yi

r
F

y

Step 1 Step 2 Step 5

b̂1

b̂2

b̂q

â
CHOOSE

BEST

c1

c2

cq

DF

CANDIDATE
VECTOR

(a)

Π(i)
DF

DF

LIST
DETECTOR

FOR
SYMBOL i

77

 Figure 5-4. A computationally-efficient implementation of the B-Chase detector.

Function BChase Detector.
Input: H, q, A Output:

1. [F, M, Π(i),] = BChasePreprocessing(, q)

2. y = Fr

3. Sort the q symbols in A nearest in order of
increasing distance, yielding s = [s1 … sq].

4. T = ∞
5. for l = 1 to q,

6. = sl

7. cl = ,

8. for k = 2 to N,

9. if cl < T

10. ,

11. = dec{ x },

12. cl = cl + ,

13. end

14. end

15. if cl < T

16. T = cl

17. f = l

18. end

19. end

20. = Π(i) .

â

dj j,
2{ } H

y1

b1 l,

y1 sl– 2d1 1,
2

x yk mk j, b̂j l,

j 1=

k 1–

∑–=

b̂k l,

x b̂k l,– 2
dk k,

2

â b̂f

78

rows of C = U* * by Π(i)*, where is the first M rows of Q(i). As a result, the definitions

of Π(i), , and L(i) given in (5-6) are equivalently defined by the following sorted-QR

decomposition of C*:

C*Π(i) = (i)U(i), (5-12)

where U(i) = (L(i)*)−1. This sorted-QR decomposition can be computed using the

algorithm given in Appendix B using the syntax [Q(i), U(i), Π(i)] = sortedQRUPPER(C*). It

is important to note that Π(i) calculated in this way puts the final N − 1 columns of in

their BLAST ordering, as shown in Section 3.2. Finally, the squares of the diagonal

elements of L(i) are a by-product of this sorted-QR decomposition, and Selection

Algorithm #1 can be implemented using (5-9).

Lines 3−8 of Figure 5-5 implement Selection Algorithm #1 in a less complex way by

computing the sorted-QR decomposition of the lower triangular matrix U, as we now

explain. First, substituting the definition of C into (5-12) gives:

C*Π(i) = UΠ(i)

= Θ(i)Θ(i)*UΠ(i), (5-13)

where Θ(i) is a unitary matrix such that U(i) = Θ(i)*UΠ(i) is an upper triangular matrix with

real and positive diagonals. Then by inspection we see that (i) = Θ(i). The matrices

Θ(i), U(i), and Π(i) are simply defined by the sorted-QR decomposition of U:

UΠ(i) = Θ(i)U(i). (5-14)

As before, the squares of the diagonal elements of L(i) are a by-product of this

decomposition.

Q̃ Q̃

Q̃

Q̃

H

Q̃

Q̃

Q̃ Q̃

79

Implementing Selection Algorithm #2 is considerably easier than Selection Algorithm

#2. Once the squared-magnitudes are

computed Selection Algorithm #2 can be implemented directly as given in (5-11). These

squared magnitudes are computed as:

= |[U*U]j,k|2 / , (5-15)

where [•]j,k is the element at the j-th row and k-th column of a matrix.

Before moving on to Step 2, we propose applying a front-end filter to the channel

output that reduces the complexity of subsequent steps. Lines 9−11 of Figure 5-5 give the

pseudocode for computing the front-end filter F, which is defined as follows:

F = D−1 (i)*, (5-16)

 Figure 5-5. The preprocessing pseudocode for the proposed
implementation of the B-Chase detector that uses Selection
Algorithm #1.

Function BChasePreprocessing.
Input: and q Output: F, M, Π(i) and

1. [Q, L] = QRdecomposition()

2. U = inverse of L*

3. for j = 1 to N, , end

4. for k = 1 to N,

5. [Θ(k), U(k), Π(k),] = sortedQRUPPER(U, e, k);

6. S(k) = min(,)
7. end

8. i = S(k)

9. D−1 = diag(U(i))

10. = first M rows of Q

11. F = (D−1Θ(i)*)Q*

12. M = (D−1Θ(i)*)LΠ(i)

13. for j = 1 to N, , end

H dj j,
2{ }

H

ej u
k j,

2

k 1…j=
∑=

lj j,
k()()2{ }j 1…N=

γq
2 l1 1,

k()()2 lj j,
k()()2{ }j 1≠

argmax
k ∈{1, 2, … N}

Q̃

dj j,
2 lj j,

i()()2=

N N 1–() gj k,
2 1 j N≤ ≤ 1 k N≤ ≤ j k≠, ,{ }

gj k,
2 uk

2

Q̃

80

where D is a diagonal matrix with . Similar to (2-2), the output of this filter

y = Fr reduces to:

y = Mb + n, (5-17)

where M = D−1L(i) is an N × N lower-triangular matrix with ones along the diagonal,

where b = Π(i)*a is a permuted version of the channel input, and the effective noise is

n = Fw − D−1U(i)b. Line 12 of Figure 5-5 gives the pseudocode for computing M,

which will be needed to implement the subdetectors.

Step 2: After applying the front-end filter as shown in Line 2 of Figure 5-4 to compute

y (5-17), the list detector simply generates a list s = [s1, … sq] of the q symbols in A

nearest y1.

Steps 3 and 4: It is convenient for implementation to merge steps 3 and 4. The result is

q DF detectors whose first symbol decisions are hard-wired to distinct outputs of the list

detector. Using the well-known decision-feedback process [16], the intersymbol

interference can be cancelled from the k-th element of y as follows:

xk = , (5-18)

where is the decision already made regarding bj by the l-th subdetector. The l-th

subdetector’s estimate of the k-th element of b can be summarized succinctly as:

, (5-19)

where dec{z} is the symbol in A nearest z.

dj j, lj j,
i()=

σ̂2

yk mk j, b̂j l,

j 1=

k 1–

∑–

b̂j l,

b̂k l,
sl k 1=,

dec xk{ } k 1>,

=

81

Step 5: In the fifth and final step, the B-Chase detector chooses its final decision as the

subdetector’s output which has the minimum cost. From (5-2), the cost of the l-th decision

vector can be expressed as cl = , which reduces to:

cl = , (5-20)

where is the decision vector produced by the l-th subdetector. For the case when

= σ2, (5-20) becomes an approximation due to the residual ISI.

A crucial piece of this low-complexity implementation is that the computations made

inside the subdetectors can be reused to calculate the cost. Specifically, using (5-18) we

can rewrite the cost expression (5-20) as:

cl = , (5-21)

since = 1. Using this expression, a cost threshold can be established with the cost of

the first subdetector’s decision, c1. The cost calculation of subsequent subdetectors (5-21)

as well as their decision feedback (5-18) can be aborted whenever this threshold is

exceeded (see Line 9 of Figure 5-4). Furthermore, the threshold can be reduced each time

a lower cost is found (see Line 15 of Figure 5-4). In any case, calculating the cost of a

subdetector’s decision vector requires at most only O(N) additional computations.

As presented here, the B-Chase algorithm implements the subdetectors in serial

fashion. The B-Chase detector also lends itself to a parallel implementation since each of

the subdetectors can operate independently as portrayed in Figure 5-3.

r HΠ i()b̂l– 2

D y Mb̂l–() 2

b̂l

σ̂2

xk b̂k l,– 2
dk k,

2

k 1=

N

∑

mk k,

82

5.4. The S-Chase Detector

In this section, we introduce the S-Chase detector, as summarized by the last row of

Table 5-1. The S-Chase detector implements multiple sorted-QR decision-feedback (DF)

detectors [47] in parallel. A key problem for all DF detectors on fading channels is the

minimal diversity gain for the first symbol detected; this leads to a large probability of

error dominates the overall error rate. The proposed S-Chase detector overcomes this

bottleneck by considering multiple possibilities for the first symbol, implementing a

separate DF detector for each possibility, and choosing the best of the resulting candidate

hard decision vectors.

A key benefit of considering multiple possibilities for the first symbol is that it

drastically reduces the importance of optimizing the detection ordering. Indeed, we will

see that a easily computed but suboptimal ordering is sufficient to achieve good

performance. The preprocessing of the S-Chase detector consists only of a sorted-QR

decomposition [47] modified to implement a simple heuristic to select the first symbol to

detect as a function of the list length. This simple selection and ordering technique

minimizes the preprocessing complexity of the S-Chase detector. In Section 5.5,

simulation results will confirm that the S-Chase detector is a good choice when the

channel experiences fast fading.

The S-Chase detector can be easily defined using the Chase framework established in

Section 5.1. The S-Chase detector is defined simply as a Chase detector that uses sorted-

QR DF as a subdetector. The list length q can be any integer in the set {1, … |A|}, and the

filters can be ZF or MMSE. It remains to specify the key parameter, namely, the choice of

which symbol to detect first.

83

In order to minimize preprocessing complexity, the S-Chase detector uses a simple

heuristic to make the symbol selection. The optimal solution to the selection problem for a

given list length was solved in (5-9). The optimal solution when q = 1 is the symbol with

the largest post-detection SNR, as found using the BLAST ordering. On the other hand,

when q is maximal a good selection is the symbol with the smallest SNR (5-11). To keep

complexity at a minimum, we propose a simple and low-complexity heuristic that does not

require evaluation of the post-detection SNR values: choose the index of the column of H

with either the minimum or maximum norm, depending on the list length q. This selection

strategy can be summarized succinctly as follows:

i = || hj ||
m , (5-22)

where m = −1 when , and m = 1 when .

Once the first symbol to detect has been selected, we propose that the order of the

remaining symbols be defined by the following sorted-QR decomposition [47]:

Π = QDM , (5-23)

where the N × N permutation matrix Π represents the symbol ordering, Q = [q1, … qN] is

an M × N matrix with orthonormal columns, D is a diagonal matrix with real and positive

diagonal elements, and M is a lower triangular matrix with ones along the diagonal. To

preserve the selection made by (5-22), the first column of Π is the i-th column of the

identity matrix. The final N − 1 columns of Π are chosen according to the sorted-QR

decomposition, which places weaker symbols later in the detection order. Implementing

the selection heuristic (5-22) requires no additional floating-point operations because the

QR decomposition already requires the column norms of . Figure 5-6 gives the

pseudocode for the preprocessing of the S-Chase detector, which computes Π, Q, D, and

arg max
j 1 … N, ,{ }∈

q 3 A 4⁄> q 3 A 4⁄≤

H

H

84

M . The core-processing of the S-Chase detector is identical to the B-Chase detector as

given in lines 2−20 of Figure 5-4.

5.5. Performance and Complexity Numerical Results

This section examines the performance and complexity of B-Chase and S-Chase

detectors on Rayleigh-fading channels, assuming the channel parameters H and σ2 are

known to the receiver. In this section, we will compare the MMSE B-Chase and S-Chase

detectors to the ZF and MMSE sphere detectors [13] whose initial radius corresponds to

the mean-squared error of the output of the ZF and MMSE BODF detectors, respectively.

In order to measure the performance-complexity trade-off of these sphere detectors, we

measure their performance when they are forced to obey a complexity limit (this is the

Function SChasePreprocessing
Inputs: (, q); Outputs: (F, M, Π,)

1. for j = 1 to N, , end

2. if ,

3. i = arg min{ : j = 1 … N}

4. else

5. i = arg max{ : j = 1 … N}

6. end

7. [Q, G, Π, D−1,] = SortedQRLOWER(, e, i);

8. M = D−1G

9. = first M rows of Q

10. F = D−1Q*

H dj j,
2{ }

ej hk j,
2

k 1…M=
∑=

q
3
4
---<

ej

ej

dj j,
2{ } H

Q̃

 Figure 5-6. Preprocessing for the S-Chase Detector. See
Appendix B for SortedQRLOWER function.

85

truncated sphere detector from Section 2.6.1). We also compare against the lattice-

reduced MMSE BODF (LLL-BODF) and lattice-reduced MMSE linear (LLL-linear)

detectors [34][46]. The last detector we compare against is the ML-BODF [11] detector

which detects the first three symbols using ZF sphere detection, and the final symbol using

ZF BODF detection. We will first give numerical results for the performance and

complexity of these detectors individually, then jointly. We use B-Chase (q) to denote the

B-Chase detector with list length q, selection algorithm (5-9), and = σ2. Likewise, we

use B-Chase(q) to denote the B-Chase detector with list length q, selection algorithm (5-

11), and = σ2. The MMSE versions of the parallel and BODF detectors are also

included in the comparison, since they are the special cases B-Chase (|A|) and B-

Chase(1), respectively.

The B-Chase detector achieves near-ML performance for a variety of channel

dimensions. To demonstrate this we performed simulations over N-input N-output

Rayleigh-fading channels with 16-QAM inputs. Figure 5-6 shows the performance versus

the number of antennas, where the SNR is measured as E[||Ha ||2] / (E[||w ||2] log2|A|).

We see that B-Chase(16) achieves near-ML performance, with an SNR penalty that ranges

from 0.5 dB to 1.0 dB as the number of antennas N increases from 2 to 6. Reducing the list

length degrades performance, but B-Chase(4) performs at least as well as the LLL-BODF

detector over the range of N from 2 to 6.

We now quantify the complexity of the B-Chase detector. The best complexity metric

depends upon many variables that are specific to a particular implementation. We avoid

the problem of defining the relative complexity of different floating-point operations by

measuring complexity as the total number of real multiplications (RM) per bit. The

σ̂2

σ̂2

86

squared absolute value of a complex number is counted as two RM, and each complex

multiply is counted as three RM. Since the number of divisions and square-roots is small

compared to the number of multiplications, the main drawback of counting only the

multiplications is that it neglects the contribution to the complexity of the addition

operations. However, this is a reasonable simplification since multiplications are generally

more complex to implement than additions. Another important point is that the

multiplication of a floating point number by a constellation point is counted as an addition

since the constellation points are just scaled integers [7]. This means that implementing

interference cancellation (5-18) is multiply-free.

B-CHASE(q)

(1)

(2)

(3)

(4)

(16)

LLL-BODF

ML

NUMBER OF ANTENNAS, N

S
N

R
 R

E
Q

U
IR

E
D

 fo
r B

E
R

 =
 1

0-3
 (i

n
dB

)

LLL-LINEAR

 Figure 5-6. SNR required versus number of antennas for various detectors.
Results are averaged over 105 Rayleigh-fading N-input N-output
channels with 16-QAM inputs.

2 3 4 5 6

15

17

19

21

23

25

27

87

The number of computations required by the detectors we compare is a random

variable that depends on the channel and noise. Using the average complexity as the basis

for comparison may be too optimistic. We measure complexity as the maximum number

of real multiplications required by a detector since systems are often designed to handle

the worst-case scenario.

The preprocessing used to implement the B-Chase detector is described in Figure 5-

5, where the N sorted-QR decompositions dominate the preprocessing complexity. On the

other hand, the most complex part of the preprocessing used to implement the B-Chase

detector is the QR decomposition of the extended channel matrix in Line 1 of Figure 5-5.

The preprocessing complexities of the MMSE sphere, LLL-BODF, and LR-linear

detectors are higher than that of the B-Chase detector. Although the preprocessing for the

MMSE sphere detector is essentially the same as that of B-Chase(1), it is more complex

because it uses the real channel model which doubles the channel dimensions. The LLL-

BODF detector requires the same preprocessing as the MMSE sphere detector in addition

to LLL lattice reduction.

Figure 5-4 describes the core-processing of both the B-Chase and B-Chase detectors.

When it requires only RM since lines 7 and 12 can be skipped. Otherwise it

requires a maximum of RM. We assume that the channel estimate is updated

every L symbol periods. As a result, the total complexity, as measured by real multiples

per bit, is related to the preprocessing complexity Cpre and core-processing complexity

Ccore by:

COMPLEXITY = . (5-24)

q 1= 3MN

3MN 3qN+

Ccore Cpre L⁄+
N A2log

88

We now investigate the performance-complexity trade-off of the B-Chase detectors for

a 4-input 4-output Rayleigh-fading channel with 16-QAM inputs. Figure 5-7 illustrates

the performance versus core complexity trade-off, where performance is measured by the

SNR required to reach BER = 10−3, and complexity is measured in real multiplications per

bit (RM/bit). This comparison applies to channels that are changing very slowly since

comparing only the core-processing complexity is equivalent to assuming the channel

never changes (L = ∞). The sphere detector achieved BER = 10−3 with only 16.0 dB of

SNR, but its complexity was as high as 282 RM/bit. B-Chase (16) sacrifices 0.4 dB of

performance in order to reduce complexity by 94%, from 282 RM/bit to 18 RM/bit. The

truncated sphere detector whose complexity limit was 41 RM/bit also suffered a 0.4 dB

performance penalty even though it differed from the sphere detector only 0.1% of the

time. The MMSE truncated sphere detector required about twice as much complexity as

B-Chase (16) to achieve the same performance. At the low-complexity end of the

spectrum, B-Chase (2) outperforms the BODF detector (B-Chase (1)) by 4.4 dB, while

increasing the complexity by 25%, from 3 RM/bit to 4 RM/bit. Clearly, the B-Chase

detector exhibits a better performance-complexity trade-off than just enforcing a

complexity limit on the sphere detector via truncation, or using the ML-DF detector. In

addition, by simply adjusting the list length parameter, the B-Chase detector provides a

simple and effective way to trade complexity for performance. The LLL-BODF detector

has the same core-processing complexity as the BODF detector at 3 RM/bit, and its

performance falls short of the ML detector by only about 1.2 dB. The B-Chase detector

outperforms the LLL-BODF detector by up to 0.8 dB when q = 16, but it also increases the

complexity significantly.

89

One important dimension to the performance-complexity trade-off not captured in

Figure 5-7 is the dependence of the performance on the target BER. In systems with more

powerful error correcting codes, a target BER of 10−3 could be lower than necessary.

Figure 5-8 demonstrates the performance-complexity trade-off when the target BER is 10−

2. The complexity of B-Chase and the LLL-BODF detector remain exactly the same. The

performance gap between B-Chase and optimal performance shrunk slightly after

increasing the target BER, and B-Chase (16) still had a better performance-complexity

trade-off than the MMSE truncated sphere detector. On the other hand, the performance

gap between the ML and LLL-BODF detectors grew, enough that the LLL-BODF detector

was outperformed by B-Chase (2), which in turn required 25% more complexity.

90

 Figure 5-7. Performance-complexity trade-off averaged over 105 4-input 4-
output Rayleigh-fading channels that are changing slowly (L = ∞)
with 16-QAM inputs with target BER 10−3.

CORE COMPLEXITY (REAL MULTIPLICATIONS PER BIT)

S
N

R
 R

E
Q

U
IR

E
D

 fo
r B

E
R

 =
 1

0-3
 (i

n
dB

)

(1)

(2)

(4)

(8)
(16)

(BODF)

(3)

(10−2)

(10−3)

(10−2)

(0)

LLL-DF
LLL-BODF

(10−3)
(10−4)

(10−4)

0 20 40 60 80 100 120

17

19

21

23
B-CHASE (q)

TRUNCATED-SPHERE (Prob[TRUNCATED-SPHERE ≠ SPHERE])

ML-DF
i=2

ML-DF
i=3

MMSE-TRUNCATED-SPHERE

91

An important dimension of the complexity comparison is not represented in either

Figure 5-7 or Figure 5-8 because they disregard how quickly the channel changes. In

contrast to Figure 5-7 and Figure 5-8, Figure 5-9 shows the performance-complexity

trade-off when the channel changes quickly (L = 4). For fast-changing channels,

minimizing the preprocessing complexity is just as important as minimizing the core-

processing complexity. In this scenario, B-Chase is a better choice than B-Chase . In fact,

B-Chase is significantly less complex than B-Chase , and it sacrifices very little

performance. In particular, B-Chase(16) and B-Chase (16) achieve roughly the same

0 2 4 6 8 10 12 14 16 18 20

13

14

15

16

OPTIMAL PERFORMANCE

 Figure 5-8. Performance-complexity trade-off averaged over 105 4-input
4-output Rayleigh-fading channels that are changing slowly
(L = ∞) with 16-QAM inputs and target BER 10−2.

CORE COMPLEXITY (REAL MULTIPLICATIONS PER BIT)

S
N

R
 R

E
Q

U
IR

E
D

 fo
r B

E
R

 =
 1

0-2
 (i

n
dB

)

(1)

(2)

(4)

(8)
(16)

(BODF)

(3)

(10−2)

(10−3)
(10−4)

LLL-DF

LLL-BODF

B-CHASE (q)

(12)

TRUNCATED-MMSE-SPHERE

92

performance, but B-Chase(16) is 23% less complex. The S-Chase detector also has a very

favorable performance-complexity trade-off. For example, S-Chase(12) outperforms B-

Chase(1) by more than 6 dB, but increases complexity by only 4% from 13.2 RM/bit to

13.8 RM/bit. Due to the high worst-case complexity of the LLL algorithm, the LLL-DF

and LLL-BODF detectors are not well-suited for fast changing channels as illustrated in

Figure 5-9.

93

 Figure 5-9. Performance-complexity trade-off averaged over 105 4-input 4-
output Rayleigh-fading channels that are changing quickly (L = 4)
with 16-QAM inputs and target BER 10−3.

TOTAL COMPLEXITY (REAL MULTIPLICATIONS PER BIT)

S
N

R
 R

E
Q

U
IR

E
D

 fo
r B

E
R

 =
 1

0-3
 (i

n
dB

)

(1)

(2)

(4) (16)

(BODF)

(3)
LLL-DF

LLL-BODF

(2)

(3)

(4)

(8)
(8)

(16)(12)
(12)

(16)
(12)

(8)

(4)

(3)

(2)

(1) (SDF)

S-CHASE(q)

B-CHASE(q)

B-CHASE (q)

5 10 15 20 25 3016

18

20

22

24

26

28

94

5.6. Chapter Summary

The Chase family of detection algorithms for MIMO channels is a combination of a

list detector and a parallel bank of subdetectors. The general Chase detector reduces to a

variety of existing MIMO detectors as special cases. Based on the Chase framework, we

proposed the B-Chase and S-Chase detectors that can trade performance for reduced

complexity by modifying the list length.

Using efficient implementations and a new selection algorithm, the B-Chase detector

achieves near-ML performance with low complexity. For example, on a slowly-changing

4-input 4-output Rayleigh-fading channel whose inputs are uncoded 16-QAM, the B-

Chase(16) detector fell 0.4 dB short of the ML detector while reducing complexity by

94%. B-Chase(16) achieved the same performance as the MMSE sphere detector with

roughly half the complexity. At the low end of the complexity spectrum, the B-Chase(2)

detector outperformed the MMSE BODF detector by 4.4 dB while increasing the core

complexity by 25%. For a quickly-changing 4-input 4-input Rayleigh-fading channel with

uncoded 16-QAM inputs, the S-Chase(12) outperformed the BODF detector by about 6 dB

with only a small complexity increase.

95

CHAPTER 6

REDUCING COMPLEXITY OF THE

LATTICE-AIDED DF DETECTOR

The underlying limitation of the performance of the decision-feedback (DF) detector

is the high probability of error for the first symbol. This thesis has already described

several ways of improving this limitation. Section 2.2 introduced the notion of using the

detection order of the symbols to improve the system bottleneck. Chapter 5 introduced the

idea of combining a list detector with DF detection to strengthen the most error-prone

symbol. The lattice-aided decision-feedback (LA-DF) detector presented in Section 2.4

can also be interpreted as a means of improving the performance of the DF detector.

Using the LLL algorithm to create a more orthogonal effective channel and aid the DF

detector has been shown to achieve near-ML performance at high SNR [34][44][46] (See

Figure 5-6). Unfortunately, the complexity of the LLL algorithm can be quite large for

some channels. To make the LA-DF detector more practical for fast-fading channels we

propose a new Double-Sorted (DOS) lattice-reduction algorithm. Combining DOS lattice-

reduction with DF creates a new MIMO detector we call the DOS-DF detector. The DOS-

DF detector achieves almost the same performance as the LLL-BODF detector, but its

worst-case preprocessing complexity is less by roughly half.

6.1. Lattice-Aided Decision-Feedback Detection

As presented in Section 2.4, the LA-DF detector creates an effective channel matrix

model:

96

= , (6-1)

where the effective channel matrix is , and where T can be any unimodular

matrix. The LA-DF detector first makes its decisions regarding each element of using

decision-feedback. Next, the LA-DF detector converts its estimate of , labelled as ,

into a decision vector regarding the channel input a.

Section 2.4 described the LA-DF detector using the conventional-DF approach. Here

we will describe the LA-DF detector using the recursive-DF approach. The approaches are

functionally equivalent, but as pointed out in Section 2.1 the recursive-DF approach is less

complex when ordering is involved.

The general QR decomposition used to define the LA-DF detector in (2-21) is written

as:

T = QDM, (6-2)

where Q is an M × N matrix with orthonormal columns, where D is an N × N diagonal

matrix with diagonal elements that are positive and real, and where M is a lower triangular

matrix with ones along the diagonal. In describing the recursive-DF implementation, it is

convenient to label the columns of the effective channel, .

We point out that the matrix M is not required to implement the LA-DF detector.

Instead, the LA-DF detector will use the forward filter F = D−1Q* one row at a time to

make its decisions, and the matrix for cancelling interference. The decision regarding

the first symbol is made by multiplying the first row of F times the effective channel

output:

, (6-3)

r̃ H̃b̃ w̃+

H̃ HT=

b̃

b̃ b̂

H

H̃ h̃1 … h̃N, ,[]=

H̃

b̂1 f1r̃=

97

where = + independently rounds each part of y to the nearest integer.

Next, the interference due to the first symbol is cancelled from the effective channel

output:

. (6-4)

The LA-DF detector assumes that the first decision is correct, and makes the decision

regarding the second symbol:

. (6-5)

The process continues, allowing the LA-DF detector to be defined by the following pair of

recursive equations :

(6-6)

, (6-7)

where , and fk is the k-th row of F.

Once the decision vector is calculated, it is converted to a decision regarding the

channel input:

 = , (6-8)

where returns the element of A nearest each element of x, and where

.

6.2. Double-Sorted Lattice-Reduction

The role of lattice reduction is to make detection easier by creating an effective

channel whose columns are more orthogonal than the original. Choosing the matrix T is

critical to the performance of the LA-DF detector. If T = I, then the LA-DF detector

y Re{ y } 1– Im{ y }

r̃1 r̃ h̃1b̂1–=

b̂2 f2r̃1=

k 1 … N, ,=

b̂k fkr̃k 1–=

r̃k r̃k 1– h̃kb̂k–=

r̃0 r̃=

â dec Tb̂ s+()2c{ }

dec x{ }

s 0.5 1 1–+() 1 … 1, ,[]T=

98

performs slightly worse than the DF detector. If T is equal to the BLAST permutation

matrix, then the LA-DF detector performs slightly worse than the BLAST-ordered

decision-feedback (BODF) detector. However, if T is calculated using the LLL algorithm,

the resulting LA-DF detector is called the LLL-DF detector and it achieves near-ML

performance at high SNR [34][44][46].

In this section we present DOS lattice reduction as a new way to compute T. It is based

on the idea that combining LLL lattice reduction with a BODF detector is overkill. DOS

lattice reduction will prove to have a small worst-case complexity while maintaining the

good performance of the LLL algorithm. DOS lattice reduction computes T in three steps:

an initial sorting, a weak-Gramm-Schmidt (WGS) reduction, and a final sorting.

The DOS detector begins by computing the lower-triangular sorted-QR

decomposition [47] of :

Π1 = Q1G, (6-9)

where Π1 is a permutation matrix that is often identical to the BLAST-ordering

permutation of , Appendix B gives the pseudocode for the sorted-QR decomposition.

Stopping with this initial sort, T = Π1, the LA-DF detector could not beat the sorted-QR

DF detector of [47]. Instead, the DOS detector prepares for the final sort by computing the

WGS reduction [34] of G, also known as size reduction, which yields:

G = L1W
−1, (6-10)

where W−1 is a unimodular lower triangular matrix with ones on the diagonal, and L1 is

also a lower triangular matrix. Figure 6-2 gives the pseudocode for the WGS reduction

algorithm, which by definition computes W−1 to minimize the column norms of L1.

H

H

H

99

Combining (6-9) and (6-10) we see that, in effect, the WGS reduction leads to a new QR

decomposition:

Π1W = Q1L1. (6-11)

If we were to stop here, with T = Π1W, the resulting LA-DF detector still cannot beat

the sorted-QR DF detector of [47] because the diagonals of L1 and G are the same.

However, the WGS reduction has created a matrix Π1W whose columns have not yet

been sorted. To achieve the best performance, the DOS-DF detector computes the BLAST

ordering of the matrix Π1W. This last step can also be viewed as a QR decomposition:

(Π1W)Π2 = QL, (6-12)

where Π2 is the BLAST permutation matrix of Π1W. This is obviously a special case of

the general QR decomposition (6-2) when we adopt the following as the lattice-reduction

matrix:

T = Π1WΠ2. (6-13)

 Figure 6-1. The weak-Gramm-Schmidt reduction algorithm.

Function WGS-Reduction.
Input: G Output: W, W–1, L

1. W = IN×N ; W–1 = IN×N ; L = G

2. for j = N – 1 downto 1,

3. for i = j + 1 to N

4. =

5. for n = i to N

6. wn,j = wn,j – wn,i

7. = –

8. end

9. end

10. end

Wi j,
1– li j, gi i,⁄

Wi j,
1–

ln j, ln j, Wi j,
1– ln i,

H

H

H

H

H

100

Figure 6-2 gives the pseudocode for a computationally efficient implementation for

the DOS-DF detector, where the functions sortedQRLOWER and sortedQRUPPER are given

in Appendix B. Table 6-1 gives the number of multiplications required by this algorithm

line-by-line. The BLAST permutation matrix Π2 is computed using the upper-triangular

sorted-QR decomposition of U1 = (L1*)−1:

U1Π2 = ΘU, (6-14)

where Θ is an N × N unitary matrix, and U is a lower-triangular matrix with real and

positive diagonals. After substituting (6-14) into (6-11) and simplifying we obtain:

T = Q1ΘL, (6-15)

where L = Θ*L1Π2. Finally, comparing to (6-2) and (6-15), we see that Q = Q1Θ.

H

 Figure 6-2. The DOS-DF detector algorithm.

Function DOS-DF.
Input: , r, , c Output:

1. [Q1, G, Π1] = sortedQRLOWER()

2. [W, W–1, L1] = WGS-Reduction(G)

3. G–1 = (bottom N rows of Q1) /

4. L1
–1 = W–1G–1

5. [Θ, U, Π2] = sortedQRUPPER((L1
–1)*)

6. T = Π1WΠ2,

7.

8. D–1 = diag(U)

9. F = D–1Θ*Q1*

10.

11.

12. for k = 1 to N,

13.

14.

15. end

16. =

H σ̂ â

H

σ̂

H̃ HT=

s 0.5 1 1–+() 1 … 1, ,[]T=

r̃0
r 2c()⁄

0
Hs–=

b̂k fkr̃k 1–=

r̃k r̃k 1– h̃kb̂k–=

â dec T b̂ s+()2c{ }

101

6.2.1. Performance Analysis

To understand how the DOS-DF detector outperforms the BODF detector, consider a

2 × 2 example. The BODF detector performs poorly when either or (from (6-9))

is small since min(,) dictates performance. The DOS detector improves the

bottleneck of the BODF detector. To see this we first observe that min(,) dictates

the performance of the DOS detector since it makes an error only when . The

diagonals of the matrix L in (6-12) can be written as:

= max , (6-16)

= min , (6-17)

where e = − is the rounding error, and . Using these

expressions we show that min(,) ≥ min(,) by considering the matrix L for

the cases Π2 = I and Π2 ≠ I.

First, if the final sort does not change the order, then Π2 = I, and = . In this case,

the DOS-DF and BODF detectors have the exact same performance limitation and achieve

full diversity. From (6-16), which implies that , and

therefore decays as SNR−2 [33]. Second, if the final sort changes the order

Table 6-1: Complexity of the DOS-DF preprocessing from Figure 6-2.

Real Multiplications

Line 1

Line 2

Line 5

Line 8

Total (M=N)

3MN2 N3 MN N2 N–+ + +

N2 N–

3N3 0.5N2 0.5N– 1–+

3MN2 1.5N3 2.5N2+ +

11.5N3 5N2 3.5N– 1–+

g1 1,
2 g2 2,

2

g2 2,
2 g1 1,

2

l1 1,
2 l2 2,

2

b̂ b̃≠

l1 1,
2 g1 1,

2
g1 1,

2 g2 2,
2

g1 1,
2 e 2g2 2,

2+
-----------------------------------,

l2 2,
2 g2 2,

2 g1 1,
2 e 2g2 2,

2+,()

g2 1, g2 2,⁄ g2 1, g2 2,⁄ e 2 1 2⁄≤

l1 1,
2 l2 2,

2 g1 1,
2 g2 2,

2

gj j,
2 lj j,

2

g1 1,
2 g2 2,

2 1 e 2–()> g1 1,
2 g2 2,

2 2⁄>

Pr b̂ b̃≠()

102

, then we know that which implies that . In this case,

the ratio of the minimum SNR of the DOS-DF and BODF detectors, γ, can have one of

two values:

. (6-18)

Obviously, γ ≥ 1, which means that the DOS-DF detector always performs at least as good

as the BODF detector. Furthermore, γ can be large, in which case the DOS-DF

significantly outperforms the BODF detector.

The reason for the BODF detector’s suboptimal performance is the fact that is

small too often. Therefore, to quantify how the DOS-DF detector improves the

performance bottleneck consider their SNR ratio γ as approaches zero and ,

which can occur when h1 and h2 are nearly colinear. In this case, since also

tends to zero, and γ approaches the following limit:

. (6-19)

Therefore, while the BODF detector always has poor performance when is small, the

DOS-DF detector always has an SNR at least 3 dB better because .

6.3. Numerical Results

In this section, we present numerical results that demonstrate that the proposed DOS-

DF detector achieves an attractive performance-complexity trade-off over Rayleigh-

fading channels. In all simulations we assume that the receiver knows the channel

parameters H and . We compare the proposed DOS-DF detector to the MMSE versions

Π2 I≠ g1 1,
2 e 2g2 2,

2+ g2 2,
2< g1 1,

2 g2 2,
2<

γ

g2 2,
2

g1 1,
2 e 2g2 2,

2+
----------------------------------- if l1 1,

2 l2 2,
2<,

g1 1,
2 e 2g2 2,

2+
g1 1,

2
----------------------------------- else,

=

g1 1,
2

g1 1,
2 e 2 0>

l1 1,
2 l2 2,

2< l1 1,
2

lim
g1 1,

2 0→ γ 1
e 2
--------=

g1 1,
2

e 2 1 2⁄≤

σ

103

of the BODF [23], LLL-DF [34][46] and LLL-BODF [46] detectors. We facilitate the

comparison of these detectors by using the same pseudocode implementation as far as

possible. To implement the LLL lattice reduction we modified the LLL algorithm given in

[46] to handle complex channel matrices as suggested in [34]. Then to implement the

LLL-BODF detector we used the pseudocode in Figure 6-2 except that the WGS reduction

is replaced by the LLL lattice reduction (Appendix C). To implement the LLL-DF detector

we used the pseudocode of Figure 6-2 except the LLL lattice reduction again replaced the

WGS reduction, and line 5 was omitted leaving Θ = I, U = (L1
–1)*, and Π2 = I.

In order to compare the performance-complexity trade-offs of these detectors, we

measure the complexity as the number of multiplications involving two real floating-point

numbers. This is a reasonable and convenient metric since these operations generally

dominate the overall complexity [7], and it allows us to avoid the problem of defining the

relative complexity of different arithmetic operations.

The core-processing for all four detectors considered here is roughly the same (lines

11−16 of Figure 6-2). The main difference is that the preliminary scaling and shifting (2-

18) and mapping to the QAM alphabet (6-8) are unnecessary for the BODF detector.

Since the complexity of these operations is negligible compared to the rest of the core-

processing the complexity comparison reduces to comparing only preprocessing

complexities. The DOS-DF detector is more complex than the BODF detector because the

forward filter F has larger dimensions, and the WGS reduction requires real

floating-point multiplications. The complexity of the LLL algorithm varies widely

depending upon the channel, but since practical systems must be prepared to implement

the algorithm in any case we measure its maximum complexity.

b̂

N2 N–

104

Figure 6-3 quantifies the performance-complexity trade-off of different LA-DF

detectors as measured over 105 4−input 4−output Rayleigh-fading channels with 16-QAM

inputs. The performance was measured as the SNR required to reach BER 10−3. The

worst-case preprocessing complexity of each detector is shown as measured in real

multiplications. The ML curve does not represent its true performance-complexity trade-

off since it requires much more core processing than the other detectors shown, but it

gives a performance reference. The DOS-DF detector is 14% more complex than the

BODF detector, but at the same time it improves performance by 6 dB. Due to the LLL

algorithm, the LLL-DF detector was up to 35% more complex than the DOS-DF detector

while performing slightly worse. The LLL-BODF detector was nearly twice as complex as

the DOS-DF detector, and performed only 0.3 dB better. Figure 6-3 also shows that using

the real channel model to implement the LLL-DF and LLL-BODF detectors does not

improve performance, but it does increase complexity substantially.

105

 Figure 6-3. Performance versus preprocessing complexity trade-off averaged
over 105 4-input 4-output Rayleigh-fading channels with 16-QAM
inputs and target BER 10−3.

PREPROCESSING COMPLEXITY (REAL MULTIPLICATIONS)

S
N

R
 R

E
Q

U
IR

E
D

 fo
r B

E
R

 =
 1

0-3
 (i

n
dB

)

DOS-DF
LLL-DF (COMPLEX) LLL-BODF

1000 2000 3000 4000

16

18

20

22

24

BODF

LLL-BODF (COMPLEX)

(REAL)

LLL-DF
(REAL)

ML
(REAL)

106

6.4. Chapter Summary

We have proposed a new kind of lattice-aided DF detector called the DOS-DF

detector. It is based on a new lattice reduction technique that sandwiches a WGS

procedure between two sorting procedures. This new detector was shown to dramatically

outperform the BODF detector with only a small increase in complexity. For example,

over a 4-input 4-output Rayleigh-fading channel with 16-QAM inputs, the DOS detector

outperformed the BODF detector by 6 dB while requiring 14% more preprocessing

complexity, and the same core-processing complexity. In the same setting, the LLL-BODF

detector needed as much as twice the preprocessing complexity of the DOS-DF detector to

perform only 0.3 dB better.

107

CHAPTER 7

CONCLUSION

Since increasing the bandwidth of a communication system is rarely an option due to

physical or legal constraints, future communication systems must use the available

spectrum more efficiently in order to increase throughput. In wireless communications

spectral efficiency can be increased by using multiple transmit and receive antennas.

However, while the capacity of these MIMO channels increases linearly with the number

of antennas, the complexity of detection increases exponentially. The practical implication

of this is that receivers require vastly more computational power in MIMO systems.

Suboptimal detectors can be used to reduce the complexity of the receiver, but they

perform worse since they require more transmit power to successfully communicate than

the optimal detector. In this thesis, we have proposed MIMO detection strategies and

algorithms that can be used to manage the performance-complexity trade-off for MIMO

channels.

The BLAST-ordered decision-feedback (BODF) detector has become somewhat of a

standard low-complexity detector. We have shown that the complexity of the BODF

detector can be further reduced by using noise prediction. The noise-predictive

implementation of the BODF detector also makes it easy to upgrade from an existing

linear detector to a BODF detector by adding some simple processing.

For high-speed applications where complexity is at a premium, sometimes even the

BODF detector is too complex. For this scenario, we propose the partial decision-

feedback (PDF) detector. It achieves nearly the same performance as the BODF detector,

108

while requiring nearly the same complexity as the linear detector. For example, for a 3-

input 3-output Rayleigh-fading channel with 64-QAM inputs, the PDF detector needs 21%

fewer computations than the BODF detector, and performs only 0.3 dB worse.

The family of Chase detectors defines a framework that includes many MIMO

detectors as special cases. This framework helps to understand how various MIMO

detectors are related to each other, and also provides a means to propose new detectors.

We have proposed two new Chase detectors called the B-Chase and S-Chase detectors.

The B-Chase detector allows the receiver to implement either the BODF detector or

achieve near-ML performance by changing a single parameter. This convenient structure

allows the receiver to manage the performance-complexity trade-off depending upon the

required performance and available computational resources. For fast-fading channels, the

S-Chase detector achieves an even better performance-complexity trade-off than the B-

Chase detector. An important strength of the B-Chase and S-Chase detectors is that they

require relatively low complexity to achieve near-ML performance. For example, on a

slowly-changing 4-input 4-output Rayleigh-fading channel whose inputs are uncoded 16-

QAM, one version of the B-Chase detector fell only 0.4 dB short of the ML detector while

reducing complexity by 94%.

For slow-fading channels, one way to achieve near-ML performance with low

complexity is to use lattice reduction to improve the performance of the decision-feedback

(DF) detector. We show how to make lattice-reduced detectors practical for fast-fading

channels by combining a new low-complexity lattice-reduction technique called double-

sorted (DOS) lattice reduction with the DF detector. The resulting DOS-DF detector

achieves near-ML performance and requires near-BODF complexity.

109

In future research, a MIMO detector with an even better performance-complexity

trade-off may be possible by improving the performance of the DOS-DF detector. The

DOS-DF detector has already been shown to achieve an attractive performance-

complexity trade-off. However, it is still outperformed by the B-Chase detector, and it

does not provide any way for the receiver to improve performance by increasing

complexity. The B-Chase detector improved upon the BODF detector by making use of a

list detector. Similarly, incorporating list detection with the DOS-DF detector should

improve performance while increasing complexity at a modest rate.

Future research should also consider the impact of imperfect channel estimation at the

receiver. In this thesis we have assumed that the receiver has perfect knowledge of the

channel matrix and the noise variance. In practice, errors in estimating these parameters

could impact the relative performance of detection algorithms.

Another practical aspect of the overall MIMO communication system not treated in

this thesis is the interaction between the MIMO detector and an error-control code. In

practice, a powerful error-control code can dramatically improve performance. Many of

these error-control codes require the detector to provide bit decisions and the degree of

certainty regarding those decisions, this is often referred to as soft information. In this

thesis we have not addressed this topic directly. However, the Chase detectors compute a

list of candidates that can be used to generate soft information [27]. Future research should

determine the most practical and efficient way to combine low-complexity MIMO

detectors with error-control codes.

110

MIMO communication systems are gaining momentum in industry as new techniques

continue to be proposed to address the practical issues involved. Various companies in

industry are building and selling new MIMO systems that leverage the new technology to

increase the speed and range of wireless local-area networks. Recent products are already

boasting data rates up to 200 Megabits per second by using MIMO technology. Such

network speeds will take the wireless office one step closer to reality.

111

APPENDIX A

BLAST-ORDERING ALGORITHM

This algorithm is a modified version of the original BLAST ordering algorithm [22].

This version is less complex because it operates on the lower triangular matrix U instead

of the pseudoinverse of H. The two algorithms give identical outputs.

112

Function BLAST
Input: H, r Output:

1. H0 = H, Π = 0NxN,

2. p = [1, 2, ..., N]

3. for j = 1 to N,

4. [Q, R] = QR(Hj−1)

5. U = (R−1)*

6. i =

7. Put a 1 in the pi-th row and j-th column of Π.

8. Delete i-th element of p.

9. Hj−1 = Hj with i-th column removed.

10.

11. end

12. r0 = r,

13. H = HΠ

14. for j = 1 to N,

15.

16. = dec()

17.

18. end

19. = Π

â

argmin
k = 1 to N−j+1

uk
2

wj ui
∗Q∗=

yj wjrj 1–=

âj yj

rj rj 1– hjâj–=

âk âk

 Figure A-1. The BLAST-ordered decision-feedback (BODF) detector using
a modification of the original sorting algorithm.

113

APPENDIX B

SORTED-QR DECOMPOSITION

Here we give the lower and upper triangular versions of the sorted-QR

decompositions. The inputs e and i are optional. The decomposition has the form:

HΠ = QG, (A-1)

where H is an M X N matrix, Q is an M X N matrix with orthonormal columns, G is lower

triangular N X N matrix with real and positive diagonals, and Π is an N X N permutation

matrix.

The optional input parameter e is useful when the sorted-QR decomposition is to be

computed multiple times for matrices whose column norms are the same. The optional

input parameter i allows the last column chosen to be specified. The two outputs

and are useful by-products of this decomposition. They are related to the diagonals

of the output matrix G; and . The matrix D whose diagonals are

, is just the matrix created by taking the diagonal elements of G. The matrix U is

therefore equal to D−1.

uk k,{ }

dk k,
2{ }

uk k, 1 gk k,⁄= dk k,
2

gk k,
2=

dk k,{ }

114

Function SortedQRLOWER.
Input: (H, e, i); Outputs: (Q, G, Π, U,)

1. Π = IN × N

2. Q = H

1. G = 0N × N

2. if e is not input

3. for j = 1 to N, , end

4. end

5. if i is not input

6. t = 0

7. else

8. t = ei

9. ei = 0

10. end

11. for k = N downto 1

12. if k > 1

13. i = arg min{ ej : j = 1, … k , ej > 0}

14. Swap the i-th and k-th columns of Q, G, and Π.

15. Swap the i-th and k-th elements of e.

16. else

17. ek = ek + t

18. end

19. = ek

20. gk,k =

21. = 1/gk,k

22. qk = qk

23. for j = k − 1 downto 1

24. gk,j = qk*qj

25. qj = qj − gk,jqk

26. ej = ej – |gk,j|2

27. end

28. end

dk k,
2{ }

ej qk j,
2

k 1…M=
∑=

dk k,
2

ek

uk k,

uk k,

 Figure B-1. The lower-triangular sorted-QR decomposition.

115

Function SortedQRUPPER.
Input: (H, e, i); Outputs: (Q, G, Π, U,)

1. Π = IN × N

2. Q = H

1. G = 0N × N

2. if e is not input

3. for j = 1 to N, , end

4. end

5. if i is not input

6. t = 0

7. else

8. t = ei

9. ei = 0

10. end

11. for k = 1 to N

12. if k < N

13. i = arg min{ ej : j = k, …, N, ej > 0}

14. Swap the i-th and k-th columns of Q, G, and Π.

15. Swap the i-th and k-th elements of e.

16. else

17. ek = ek + t

18. end

19. = ek

20. gk,k =

21. = 1/gk,k

22. qk = qk

23. for j = k + 1 to N

24. gk,j = qk*qj

25. qj = qj − gk,jqk

26. ej = ej – |gk,j|2

27. end

28. end

dk k,
2{ }

ej qk j,
2

k 1…M=
∑=

dk k,
2

ek

uk k,

uk k,

 Figure B-2. The upper-triangular sorted-QR decomposition.

116

APPENDIX C

LLL LATTICE-REDUCTION ALGORITHM

The LLL lattice-reduction algorithm given in [46] operates on an upper-triangular real

matrix R. Here we give the lower-triangular version of this algorithm that operates on a

complex matrix R. Note that the parameter used here corresponds to as used in [46]δ δ

117

Function LLL.
Input: (Q, R, Π, δ); Outputs: (, , T)

1. = Q; = R; T = Π

2. N = number of columns in R

3. i = N − 1

4. while i ≥ 1

5. for j = i+1 to N

6. µ =

7. for k = j to N

8.

9.

10. end

11. end

12.

13.

14. n2 =

15. if > n

16. Swap the (i+1)-th and i-th columns of T and .

17. = IN × N

18. ;

19. ; ;

; ;

20.

21.

22. i = min ;

23. else

24. i = i − 1

25. end

26. end

Q̃ R̃

Q̃ R̃

r̃j i, r̃j j,⁄

r̃k i, r̃k i, µr̃k j,–=

tk i, tk i, µtk j,–=

α r̃i 1+ i,=

β r̃i i,=

α 2 β2+

δr̃i 1+ i 1+,

R̃

Θ

α α n⁄= β β n⁄=

Θi i, α–= Θi i 1+, β=

Θi 1+ i, β= Θi 1+ i 1+, α∗=

R̃ ΘR̃=

Q̃ Q̃Θ∗=

i 1+ N 1–,()

 Figure C-1. The LLL lattice-reduction algorithm for lower-
triangular matrices.

118

 REFERENCES

 [1] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lattices,” IEEE
Trans. on Inf. Th., vol. 48, no. 8, Aug. 2002.

 [2] C. Belfiore, and J. Park, “Decision-feedback equalization,” Proc. IEEE, vol. 67, no. 8,
pp. 1143-1156, Aug. 1979.

 [3] J. Benesty, Y. Huang, and J. Chen, “A fast recursive algorithm for optimum sequential
signal detection in a BLAST system,” IEEE Trans. on Sig. Proc., vol. 51, no. 7, pp.
1722-1730, July 2003.

 [4] A. Benjebbour, and S. Yoshida, “Novel semi-adaptive ordered successive receivers for
MIMO wireless systems,” IEEE Int. Symp. Personal Indoor Mobile Radio Commun.,
vol. 2, pp. 582-586, Sept. 2002.

 [5] A. Bhargave, R. J.P. de Figueiredo, and T. Eltoft, “A detection algorithm for the V-
BLAST system,” IEEE Global Telecommun. Conf., vol. 1, pp. 494-498, Nov. 2001.

 [6] R. Böhnke, D. Wübben, V. Kühn, and K. Kammeyer, “Reduced complexity MMSE
detection for BLAST architectures,” IEEE Global Commun. Conf., vol. 4, pp. 2258-
2262, Dec. 2003.

 [7] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fischtner, H. Bölcskei, “VLSI
implementation of MIMO detection using the sphere decoding algorithm,” IEEE J.
Solid-State Circuits, vol. 40, no. 7, pp. 1566-1577, July 2005.

 [8] R. T. Causey, and J. R. Barry, “Blind multiuser detection using linear prediction,” IEEE
J. Sel. Areas Commun., vol. 16, no. 8, pp. 1702-1710.

 [9] A. Chan, and I. Lee, “A new reduced-complexity sphere decoder for multiple antenna
systems,” IEEE Conf. on Commun., vol. 1, pp. 460-464, May 2002.

 [10] D. Chase, “A class of algorithms for decoding block codes with channel measurement
information,” IEEE Trans. Info. Th., pp. 170-182, Jan. 1972.

 [11] W. J. Choi, R. Negi, and J. Cioffi, “Combined ML and DFE decoding for the V-BLAST
system,” IEEE Int. Conf. on Commun., pp. 1243-1248, June 2000.

 [12] T. Cui, and C. Tellambura, “Approximate ML detection for MIMO systems using
multistage sphere decoding,” IEEE Sig. Proc. Letters, vol. 12, no. 3, Mar. 2005.

 [13] M. O. Damen, H. E. Gamal, and G. Caire, “On maximum-likelihood detection and the
search for the closest lattice point,” IEEE Trans. on Info. Th., vol. 49, no. 10, Oct. 2003.

119

 [14] M. O. Damen, A. Chkief, and J. C. Belfiore, “Lattice code decoder for space-time
codes,” IEEE Commun. Letters, pp. 161-163, May 2000.

 [15] A. Duel-Hallen, “Equalizers for multiple input/multiple output channels and PAM
systems with cyclostationary input sequences,” IEEE J. Sel. Areas Commun., vol. 10,
no. 3, pp. 630-639, Apr. 1992.

 [16] A. Duel-Hallen, “Decorrelating decision-feedback multiuser detector for synchronous
code-division multiple-access channel,” IEEE Trans. on Commun., vol. 41, no. 2, pp.
285-290, Feb. 1993.

 [17] A. Duel-Hallen, “A family of multiuser decision-feedback detectors for asynchronous
code-division multiple-access systems,” IEEE Trans. on Commun., vol. 43, no. 2/3/4,
pp. 421-434, Feb./Mar./Apr. 1995.

 [18] Y. L. C. de Jong, T. J. Willink, “Iterative tree search detection for MIMO wireless
systems,” IEEE Trans. on Commun., vol. 53, no. 6, pp. 930-935, June 2005.

 [19] J. H. Y. Fan, R. D. Murch, and W. H. Mow, “Near Maximum Likelihood Detection
Schemes for Wireless MIMO Systems,” IEEE Trans. on Wireless Commun., vol. 3, no.
5, pp. 1427-1430, Sept. 2004.

 [20] R. F. H. Fischer, and C. Windpassinger, “Real versus complex-valued equalization in V-
BLAST systems,” Electronic Letters, vol. 39, no. 5, pp. 470-471, Mar. 2003.

 [21] G. J. Foschini, and M. J. Gans, “On limits of wireless communications in a fading
environment when using multiple antennas,” Wireless Personal Commun., vol. 6, pp.
311-335, Mar. 1998.

 [22] G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky, “Simplified
processing for wireless communication at high spectral efficiency,” IEEE J. Select.
Areas Commun., vol. 17, no. 11, pp. 1841-1852, Nov. 1999.

 [23] G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, “Detection
algorithm and initial laboratory results using V-BLAST space-time communication
architecture,” Electronic Letters, vol. 35, no. 1, pp. 14-16, Jan. 1999.

 [24] G. H. Golub, and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD: Johns
Hopkins Univ. Press, 1996.

 [25] B. Hassibi, “An efficient square-soot algorithm for BLAST,” IEEE Conf. on Acoustics,
Speech, and Signal Proc., vol. 2, pp. 737-740, June 2000.

 [26] B. Hassibi, and H. Vikalo, “On the complexity of sphere decoding,” Asimolar Conf. on
Sig., Sys. and Computers, vol. 2, pp. 1051-1055, Nov. 2001.

120

 [27] B. M. Hochwald, and S. ten Brink, “Achieving near-capacity on a multiple-antenna
channel,” IEEE Trans. on Commun., vol. 51, no. 3, Mar. 2003.

 [28] J. W. Kang, and K. B. Lee, “Layered structure ML detection scheme for MIMO
systems,” Korean Domestic Conf., 2002.

 [29] R. Kannan, “Improved algorithms for integer programming and related lattice
problems,” Proc. ACM Symp. Theory of Computing, pp. 193-206, Apr. 1983.

 [30] Y. Li, and Z. Luo, “Parallel detection for V-BLAST system,” IEEE Conf. on Commun.,
vol. 1, pp. 340-344, May 2002.

 [31] L. Lovasz, An Algorithmic Theory of Numbers, Graphs, and Convexity, Philadelphia,
PA: SIAM 1986.

 [32] D. J. Love, S. Hosur, A. Batra, and R. W. Heath, “Chase decoding for space-time codes,”
IEEE Vehicular Tech. Conf., vol. 3, pp. 1663-1667, Nov. 2004.

 [33] N. Prasad, M. K. Varanasi, “Analysis of decision-feedback detection for MIMO
Rayleigh fading channels and optimum allocation of transmitter powers and QAM
constellations,” Allerton Conf. Commun., Control, and Comp., Univ. of IL., Oct. 2001.

 [34] W. H. Mow, “Universal lattice decoding: principle and recent advances,” Wireless
Commun. and Mobile Computing, Special issue on coding and its applications in
wireless CDMA systems, vol. 3, no. 5, Aug. 2003, pp. 553-569.

 [35] M. Pohst, “On the computation of lattice vectors of minimal length, successive minima
and reduced bases with applications,” ACM SIGSAM Bull., vol. 15, pp. 37-44, Feb.
1981.

 [36] C. P. Schnorr, and M. Euchner, “Lattice basis reduction: Improved practical algorithms
and solving subset sum problems,” Math. Programming, vol. 66, pp. 181-191, 1994.

 [37] D. Seethaler, H. Artés, and F. Hlawatsch, “Dynamic nulling-and-cancelling with near-
ML performance for MIMO communication systems,” IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, vol. 4, pp. 777-780, May 2004.

 [38] K. Su, and I. J. Wassell, “A new ordering for efficient sphere decoding,” IEEE Int. Conf.
on Commun., vol. 3, pp. 1906-1910, May 2005.

 [39] D. Tse, and P. Viswanath, Fundamentals of Wireless Communications, Cambridge Univ.
Press, June 2005.

 [40] M. K. Varanasi, and B. Aazhang, “Near-optimum detection in synchronous code-
division multiple-access systems,” IEEE Trans. on Commun., vol. 39, no. 5, pp. 725-
736, May 1991.

121

 [41] S. Verdú, Multiuser Detection, Cambridge University Press, 1998.

 [42] E. Viterbo, and J. Boutros, “A universal lattice code decoder for fading channels,” IEEE
Trans. on Inf. Th., vol. 45, no. 5, July 1999.

 [43] W. K. Wai, C. Y. Tsui, and R. S. Cheng, “A low complexity architecture of the V-
BLAST system,” IEEE Wireless Commun. and Networking Conf. (WCNC), vol. 1, pp.
310-314, Sept. 2000.

 [44] C. Windpassinger, and R. F. H. Fischer, “Low-complexity near-maximum-likelihood
detection and precoding for MIMO systems using lattice reduction,” Proc. IEEE Inf. Th.
Workshop (ITW), pp. 345-348, April 2003.

 [45] C. Windpassinger, L. H.-J. Lampe, and R. F. H. Fischer, “From lattice-reduction-aided
detection towards maximum-likelihood detection in MIMO systems,” Int. Conf. on
Wireless and Optical Commun., pp. 144-148, July 2003.

 [46] D. Wübben, R. Böhnke, V. Kühn, and K. Kammeyer, “Near-maximum-likelihood
detection of MIMO systems using MMSE-based lattice-reduction,” IEEE Conf. on
Commun., vol. 2, pp. 798-802, June. 2004.

 [47] D. Wübben, R. Böhnke, J. Rinas, V. Kühn, and K. Kammeyer, “Efficient algorithm for
decoding layered space-time codes,” Electronic Letters, vol. 37, no. 22, pp.1348-1350,
Oct., 2001.

 [48] D. Wübben, R. Böhnke, J. Rinas, V. Kühn, and K. Kammeyer, “MMSE extension of V-
BLAST based on sorted QR decomposition,” IEEE Vehicular Tech. Conf., vol. 1, pp.
508-512, Oct. 2003.

 [49] H. Yao, and G. W. Wornell, “Lattice-reduction-aided detectors for MIMO
communication systems,” Global Telecommun. Conf., vol. 1, pp. 424-428, Nov. 2002.

 [50] W. Zha, and S. Blostein, “Modified decorrelating decision-feedback detection of
BLAST space-time system,” IEEE Conf. on Commun., vol. 1, pp. 335-339, May 2002.

 [51] W. Zhao, and G. B. Giannakis, “Sphere decoding algorithms with improved radius
search,” IEEE Commun. and Networking Conf., vol. 4, pp. 2290-2294, March 2004.

 [52] H. Zhu, Z. Lei, and F. Chin, “An improved square-root algorithm for BLAST,” IEEE
Trans. on Sig. Proc., vol. 11, no. 9, pp. 772-775, Sept. 2004.

 [53] E. Zimmerman, W. Rave, and G. Fettweis, “On the complexity of sphere decoding,” Int.
Symp. on Wireless and Pers. Multimedia Commun., Sept. 2004.

122

 VITA

Deric Waters was born in Wellington, TX in 1977 and grew up in the small farming

community of Samnorwood, Texas. He left home as the valedictorian of the class of 1995 to

pursue a college education at Texas Tech University as a presidential scholar. In December 1999,

he received bachelor of science degrees in Electrical Engineering and Computer Science with the

designation of magna cum laude. He worked as an engineer in the Geolocation and Signal

Exploitation division at Southwest Research Institute in San Antonio, Texas before beginning his

graduate studies in the Fall of 2000. While earning his master of science degree from the Georgia

Institute of Technology, he spent two years at their Georgia Tech Lorraine campus in Metz,

France. As part of a dual degree program, he earned a French engineering certificate by passing

the senior year at a French engineering school called l’Ecole Supérieure d’Ingenieurs de

Marseille. In the Summer of 2002, he was awarded a master of science degree in Electrical and

Computer Engineering from the Georgia Institute of Technology with a specialization in

Telecommunications. During 2002-2005, he completed the research included in this dissertation

under the advisement of Dr. John Barry. Finally, in December 2005 Mr. Waters received his PhD

in Electrical and Computer Engineering from the Georgia Institute of Technology.

