
Iterative Timing Recovery for Magnetic Recording

Channels with Low Signal-to-Noise Ratio

A Thesis
Presented to

The Academic Faculty

by

Aravind R. Nayak

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Electrical and Computer Engineering
Georgia Institute of Technology

June 2004

Iterative Timing Recovery for Magnetic Recording

Channels with Low Signal-to-Noise Ratio

Approved by:

Dr. John R. Barry, Advisor

Dr. Steven W. McLaughlin, Co-Advisor

Dr. Gordon L. Stüber

Dr. David G. Taylor

Dr. Thomas D. Morley

Date Approved: 24 June 2004

To Dilip, Antony and Clement.

iii

ACKNOWLEDGEMENTS

I thank Dr. John R. Barry and Dr. Steven W. McLaughlin for being excellent

advisors and great people. They have guided me through the last five years with

skill and patience, and I am the better for it. Working with them has taught me the

importance of attention to detail, of clarity of thought and expression, and of not

mistaking the trees for the woods. Thanks also for the opportunity to spend a year in

GT Lorraine, France! I also thank Dr. Gordon L. Stüber, Dr. David G. Taylor and

Dr. Thomas D. Morley for serving on my defence committee. Thanks are also due

to Zak Keirn and German Feyh for the invaluable opportunity to work with them in

Summer 2003. The work was great, and so was the chance to be in Colorado!

Now, things start to get a bit murky, what with so many other people to thank!

As with anyone else and to an even greater extent, I have been helped and supported

along the way by a great number of people and it is impossible for me to thank

everyone of them without the risk of having the acknowledgements section as the

biggest portion of this document. So, the following is a partial list of people whom I

thank in the most heartfelt way.

Thanks to Dilip, Antony and Clement for being who they are. I learnt an enormous

lot by being with them, listening to them, and talking to them during my days at

Madras and even after. Thanks also to the whole gang at Madras: Badri, Chava,

Praveen, Kiran and Sabu.

Life would have been much the worse for me if it had not been for Niranjan

and Ashwini. Thank you, Niranjan, for being so full of life, with a never a dull

moment with you around. Thank you, Ashwini, for the roller-coaster rides, and also

for opening up a whole new chapter in my life and more importantly agreeing to be

iv

a part of it! And of course, thanks to mother and Ajanth for being so unvaweringly

supportive with more confidence in me than safely warranted.

Thanks also to the staff at Georgia Tech, notably Cordai Farrar and Marilou

Mycko, who were very helpful and took a lot of stress out of the administrative

details of the PhD process, traveling to conferences, etc.

I can not thank the Georgia Tech gang enough. The five years I spent at Tech

have truly been the most enjoyable I have had and they have played no mean part

in it. Thanks to the Tumlin gang: Badri, Pradnya, Shilpa, Avanti, Srini and Nisarga

for a whale of a time with all the fun-filled activities. Thanks also to the GCATT

gang: Andrew, Renato (and Turia), Badri, Shayan, Joon-Hyun, Piya, Arumugam,

Estuardo, Ravi, Rajesh and Shantanu. All the discussions about topics technical and

non-technical that we had were fun and enriching. Special thanks to Renato and

Turia for the great trip to the Rockies, and to Renato for patiently going through my

thesis and the final presentation and giving detailed and helpful comments. Thanks

to Andrew for his infinite wisdom, the great movies and his famous secret for good

cooking. And not to mention, thanks to Shayan and Rajesh for putting up with me

the homeless! By this point, the keen reader would undoubtedly have noticed the

presence of Badri in almost all the lists I mentioned so far. Forces beyond our control

have made sure that for the last nine years, both of us have had to endure each other’s

company, be it in Madras, Atlanta or Metz. Not too sure it won’t happen again in the

future, so I have decided to be nice to Badri and thank him specially! Kidding aside, I

whole-heartedly thank Badri. Thanks also to Poonam, Suchi and Deepak Jahagirdar.

Though I got to know them well relatively recently, I can honestly say that it has been

a great pleasure. I could go on like this, but will stop with thanking all those who

put up with my incessant requests for playing badminton and also actually obliged

me!

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . x

SUMMARY . xiii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND INFORMATION 6

2.1 Magnetic Recording . 6

2.1.1 History . 7

2.1.2 Operational Overview . 8

2.1.3 Write . 10

2.1.4 Read-back . 11

2.1.5 Equalization . 11

2.1.6 Timing Recovery . 13

2.1.7 Precoding . 13

2.1.8 Run-length Limited Codes 13

2.1.9 Error Control Codes . 14

2.2 Timing Recovery . 15

2.2.1 Classification . 17

2.2.2 PLL-based Timing Recovery 18

2.2.3 Timing Error Detector . 22

2.3 Conventional Coded System . 26

2.3.1 Turbo Codes . 27

2.3.2 Low Density Parity Check Codes 36

2.3.3 Turbo Equalization . 43

2.4 Iterative Synchronization . 44

2.4.1 AWGN Channel and Constant Offset 45

vi

2.4.2 AWGN Channel and Time-varying Offset 47

2.4.3 ISI Channel and Time-varying Offset 48

2.5 Summary . 50

CHAPTER 3 CRAMÉR-RAO BOUND 51

3.1 Definition . 52

3.2 System Model . 55

3.3 Evaluation of the CRB . 56

3.3.1 Constant Offset . 59

3.3.2 Frequency Offset . 63

3.3.3 Accumulation Process . 66

3.3.4 Random Walk . 69

3.3.5 General Model: Frequency Offset + Random Walk 74

3.4 Summary . 76

CHAPTER 4 CONVENTIONAL TIMING RECOVERY 78

4.1 PLL-based Timing Recovery . 79

4.2 PLL vs. CRB . 81

4.2.1 Constant Offset . 82

4.2.2 Frequency Offset . 83

4.2.3 Random Walk . 84

4.3 PLL vs. Kalman Filter . 86

4.4 Summary . 89

CHAPTER 5 OUTPERFORMING THE PLL 90

5.1 System Model . 91

5.2 Constant Offset: Maximum-likelihood Estimation 92

5.2.1 ML: Gradient Descent . 92

5.2.2 Simulation . 93

5.3 Frequency Offset: ML Estimation 94

5.3.1 ML: Levenberg-Marquardt Method 95

vii

5.3.2 Simulation . 97

5.4 Random Walk: Maximum A Posteriori (MAP) Estimation 98

5.4.1 Linear Model from TED and PLL 99

5.4.2 MAP Estimator for the Linear Model 100

5.4.3 Suboptimal Low-Complexity Implementations 103

5.5 Summary . 108

CHAPTER 6 ACQUISITION . 109

6.1 History: Preamble Placement for Channel Estimation 110

6.2 Conventional Acquisition . 111

6.3 Linear Model: Optimal Preamble Placement 112

6.3.1 Least Squares Estimation . 113

6.3.2 Choosing the optimal I . 114

6.3.3 Dealing with Vτ0 . 117

6.3.4 Performance Evaluation of the Optimal Placement 118

6.4 Actual System: Optimal Preamble Placement 120

6.5 Cycle Slips . 121

6.6 Joint Acquisition and Tracking . 123

6.7 Summary . 126

CHAPTER 7 ITERATIVE TIMING RECOVERY 127

7.1 Conventional System . 128

7.2 Motivation for Iterative Timing Recovery 129

7.3 Iterative Timing Recovery . 133

7.4 Simulation Results . 135

7.4.1 Low Rate Convolutional Code + Moderate Random Walk . . 135

7.4.2 High Rate Convolutional Code + Severe Random Walk . . . 136

7.4.3 Low Rate Irregular LDPC Code + Constant Offset 139

7.4.4 High Rate Irregular LDPC Code + Random Walk 140

7.4.5 High Rate Regular LDPC Code + Frequency Offset 143

viii

7.4.6 For BER/SER performance, PLL is adequate 145

7.4.7 Optimal Acquisition and Iterative Tracking 146

7.4.8 Complexity Comparison . 148

7.5 Summary . 151

CHAPTER 8 CONCLUSION . 152

8.1 Main Contributions . 152

8.2 Future Work . 153

APPENDIX A — SOFT SLICER FOR THE PR-IV CHANNEL . 154

APPENDIX B — INVERTING THE TOTAL INFORMATION MA-
TRIX FOR A RANDOM WALK . 155

REFERENCES . 160

VITA . 166

ix

LIST OF FIGURES

Figure 1 System block diagram from a communications point of view. 9

Figure 2 Continuous-time discrete-time interface. 15

Figure 3 Timing jitter in communication systems. 16

Figure 4 System block diagram with timing offsets, channel distortion and
additive noise. 19

Figure 5 Conventional timing recovery. 20

Figure 6 Timing function for the MM TED on the PR-IV channel. 24

Figure 7 Timing error second moment for the MM TED on the PR-IV channel. 25

Figure 8 An example of a cycle slip. 26

Figure 9 General block diagram of a coded system. 27

Figure 10 (a) A convolutional encoder; (b) a systematic convolutional encoder;
and (c) a recursive systematic convolutional (RSC) encoder. 28

Figure 11 An example state diagram. 29

Figure 12 An example trellis diagram. 30

Figure 13 A parallel turbo encoder. 33

Figure 14 A parallel turbo decoder. 34

Figure 15 A rate-1/4 serial turbo encoder. 35

Figure 16 A serial turbo decoder. 35

Figure 17 Tanner graph representation of a parity check matrix. 37

Figure 18 The bit and check updates in message passing decoding. 41

Figure 19 A turbo equalizer. 44

Figure 20 CRB depends on the narrowness of the conditional probability density. 52

Figure 21 System block diagram with timing offsets, channel distortion and
additive noise. 55

Figure 22 The lower bound on timing estimation error variance at SNR = 5.0
dB. 71

Figure 23 Steady state bound at the two extremes. 72

Figure 24 Shape of the end effect is independent of packet length. 73

x

Figure 25 System block diagram with timing offsets, channel distortion and
additive noise. 79

Figure 26 Conventional timing recovery. 81

Figure 27 Constant Offset: Decision-directed case approaches the trained case
as SNR increases. 82

Figure 28 PLL timing estimate is a noisy version of the actual timing offset. . 83

Figure 29 Frequency offset: Trained PLL-based system does not achieve the
CRB. 84

Figure 30 Random walk: Trained PLL does not achieve the steady-state CRB. 85

Figure 31 System block diagram with timing offsets, channel distortion and
additive noise. 91

Figure 32 Constant Offset: ML estimator achieves the CRB. 93

Figure 33 The cost function surface makes gradient descent unsuitable. 95

Figure 34 The Levenberg-Marquardt method. 97

Figure 35 Frequency offset: Trained LM achieves the CRB. 98

Figure 36 Conventional timing recovery. 99

Figure 37 MM TED measurement error variance. 102

Figure 38 Actual MAP performance 1.5 dB away from the steady-state CRB. 103

Figure 39 The shaping function has steady-state value of unity. 105

Figure 40 Except for shifting and scaling, this is a typical row of Kε. 106

Figure 41 Approximate MAP estimator. 106

Figure 42 Various suboptimal strategies. 107

Figure 43 The various constraints of ε. 115

Figure 44 Proposed preamble placement strategy. 117

Figure 45 Optimal arrangement much better than conventional one. 119

Figure 46 Splitting the preamble reduces the occurrence of cycle slips. 122

Figure 47 Block diagram of a conventional convolutional coded system. 129

Figure 48 Block diagram of a conventional LDPC coded system. 130

Figure 49 The rate-1/4 convolutional coded system is more than 4.5 dB away
from known timing. 131

xi

Figure 50 The rate-8/9 LDPC coded system is around 4 dB away from known
timing. 132

Figure 51 Comparing the conventional and the proposed receivers. 132

Figure 52 Joint timing recovery and turbo equalization. 134

Figure 53 Rate-1/4 convolutional code, random walk, PR channel. 135

Figure 54 Iterative timing recovery corrects cycle slips automatically. 137

Figure 55 Rate-8/9 convolutional code, severe random walk, PR channel. . . . 138

Figure 56 Rate-1/2 irregular LDPC code, constant offset, AWGN channel. . . 139

Figure 57 Rate-8/9 irregular LDPC code, moderate random walk, PR channel. 140

Figure 58 Automatic correction of cycle slips needs many iterations. 141

Figure 59 Cycle slip detection reduces the number of iterations needed. 142

Figure 60 Rate-8/9 irregular LDPC code, severe random walk, PR channel. . 143

Figure 61 Rate-8/9 regular LDPC code, frequency offset, PR channel. 145

Figure 62 Performance with optimal acquisition and iterative tracking. 147

Figure 63 Comparing the complexity of the different schemes. 150

xii

SUMMARY

Digital communication systems invariably employ an underlying analog com-

munication channel. At the transmitter, data is modulated to obtain an analog

waveform which is input to the channel. At the receiver, the output of the channel

needs to be mapped back into the discrete domain. To this effect, the continuous-time

received waveform is sampled at instants chosen by the timing recovery block.

A widely used timing recovery method is based on a phase-locked loop (PLL),

which updates its timing estimates based on a decision-directed device. Timing re-

covery performance is a strong function of the reliability of decisions, and hence,

of the channel signal-to-noise ratio (SNR). Iteratively decodable error-control codes

(ECCs) like turbo codes and LDPC codes allow operation at SNRs lower than ever

before, thus exacerbating timing recovery.

We propose iterative timing recovery, where the timing recovery block, the equal-

izer and the ECC decoder exchange information, giving the timing recovery block

access to decisions that are much more reliable than the instantaneous ones. This

provides significant SNR gains at a marginal complexity penalty over a conventional

turbo equalizer where the equalizer and the ECC decoder exchange information. We

also derive the Cramér-Rao bound, which is a lower bound on the estimation error

variance of any timing estimator, and propose timing recovery methods that outper-

form the conventional PLL and achieve the Cramér-Rao bound in some cases.

At low SNR, timing recovery suffers from cycle slips, where the receiver drops or

adds one or more symbols, and consequently, almost always the ECC decoder fails

to decode. Iterative timing recovery has the ability to corrects cycle slips. To reduce

the number of iterations, we propose cycle slip detection and correction methods.

xiii

CHAPTER 1

INTRODUCTION

Timing recovery is an essential component of digital communication systems. Most

physical communication channels are analog in nature. The information to be trans-

mitted is in the form of bits, which are modulated to suit the analog channel charac-

teristics. The output of the channel needs to be mapped back into the discrete domain

at the receiver. To this end, the continuous-time received waveform is sampled at in-

stants chosen by the timing recovery block. The system error-rate varies drastically

with the performance of timing recovery, which, in turn, is a strong function of the

operating SNR.

A widely used timing recovery method is the decision-directed phase-locked loop

(PLL) [64]. The PLL-based timing recovery scheme employs a timing error detector

(TED) to estimate the timing error, and uses these estimates to correct its timing

estimates. The TED uses previous received samples and decisions on the previous

transmitted symbols based on the previous samples to generate timing error estimates.

The feedback loop thus formed is sensitive to the delay in the loop, and the decision

latency can not be too large. With high SNR, instantaneous decisions are reliable

enough for the timing recovery mechanism to perform well.

The introduction of iteratively decodable error control codes (ECCs) like turbo

codes [9] and low-density parity check (LDPC) codes [25] led to a significant reduction

in the operating SNR due to the large coding gains afforded by the iterative decoding

of these codes. In addition, the principle of iterative decoding has been extended

to include equalization as well. Turbo equalization [54], where the equalizer and

the ECC decoder iterate, allows an even lower SNR of operation. Thus, the timing

1

recovery block now needs to operate at SNR lower than ever before.

The decisions from the ECC decoder are more reliable than the instantaneous

ones, but usually the decoding process introduces significant latency. At high SNR,

we can afford to use instantaneous decisions, thus avoiding decision latency altogether.

At low SNR, however, we need to take the presence of the ECC into account in order

to have reliable decisions during timing recovery.

The maximum-likelihood solution to this problem would require the joint timing

recovery, equalization and decoding. This is prohibitively complex. The expectation-

maximization algorithm [26] provides an iterative solution to this problem, but even

this solution has very high complexity.

We propose iterative timing recovery as a low-complexity solution to the problem

of timing recovery at low SNR. Iterative timing recovery is an extension of the turbo

equalization principle to include the timing recovery block, facilitating exchange of

information between the timing recovery block, the equalizer and the ECC decoder.

At the end of each turbo equalizer iteration involving the equalizer and the ECC

decoder, decisions more reliable than the instantaneous ones are available, and these

can be fed back to the timing recovery block to improve its performance. These better

timing estimates can then be used to refine the samples and this, in turn, improves

the performance of the turbo equalizer in the next iteration. As the complexity of the

timing recovery operation is usually negligible compared to that of a turbo equalizer

iteration, the increase in complexity per iteration is minimal.

So far, to improve the low SNR performance of the system, we used the presence of

the ECC. Without changing the timing recovery architecture, system performance was

enhanced by using better decisions available from the ECC decoder. An alternative

approach is to improve the timing recovery architecture itself. To this end, we first

derive the Cramér-Rao bound (CRB) [63] for the timing recovery problem. This

is a lower bound on the estimation error variance for any unbiased timing recovery

2

method. We compare the conventional PLL-based timing recovery method with the

CRB, and observe that the PLL-based system does not achieve the CRB. Next, we

propose algorithms that achieve the CRB in the presence of a frequency offset, and for

the random walk case, we present an maximum a posteriori (MAP) [63] estimation-

based algorithm that outperforms the PLL.

A major problem with low SNR and moderate to severe timing offset models is the

phenomenon of cycle slips [64], where the receiver adds or drops a symbol entirely,

leading to catastrophic errors. In the presence of cycle slips, the ECC decoder on

its own almost always fails to decode. An advantage of iterative timing recovery

is that it is capable of correcting cycle slips. When a cycle slip occurs, the timing

recovery unit does not suddenly add or drop symbols. Rather, it loses track of the

actual timing offsets gradually, eventually settling down at an offset corresponding

to multiples of the symbol duration. As iterations progress, the size of the boundary

zone between perfect lock and multiple symbol offset reduces and this boundary moves

towards the end of the packet. Also, as iterations progress, the size of the portion

of the packet affected by this offset reduces, and eventually, the cycle slip is pinched

out. To reduce the number of iterations needed, we propose some simple cycle slip

detection and correction methods. In addition, we show that splitting the acquisition

preamble into two halves and placing these at the beginning and at the end of the

packet greatly reduces the occurrence of cycle slips. When faced with a frequency

offset timing model, this arrangement minimizes the CRB on the estimation of the

frequency offset and also of the initial timing offset.

For multi-parameter estimation problems, usually the joint estimation problems

is a hard one. Iterative solutions that involve exchange of information between sub-

optimal estimators, each of which estimates a subset of the parameters, as opposed

to all the parameters jointly, approximate the joint estimation solution very well in

many cases. This has led to the conjecture that it is the process of iteration itself

3

that provides most of the power of these solutions, as opposed to the optimality of

the component estimator blocks. In other words, in an iterative setting, it is not

critical to optimize the individual blocks. Given reasonably good individual blocks,

the process of iteration gets us close to the best possible performance. The research

presented in this thesis support this conjecture. When we use the error-rate as the

metric of comparison, using the PLL as the timing recovery block as opposed to using

the CRB-achieving methods leads to very little degradation in performance. Much

of the loss of the PLL-based iterative system with respect to the best possible per-

formance is due to the occurence of cycle slips. The performance of a receiver with

known timing offsets provides a lower bound to the performance of timing recovery

methods. In addition, another lower bound is provided by the genie-aided receiver,

whose timing recovery block has access to the transmitted data. Used in conjunction

with the preamble placement to minimize the CRB, the PLL-based iterative timing

recovery method performs close to the genie-aided system with reasonable complexity.

The structure of the rest of the thesis is as follows. In Chapter 2, we discuss the

magnetic recording channel that forms the basis of all the examples and simulation

results. In addition, we set up the timing recovery problem and review the PLL-based

timing recovery method. We detail the conventional coded system that uses iterative

ECCs i.e., turbo codes and LDPC codes. We also discuss turbo equalization, based

on which we propose iterative timing recovery. In addition, we present previous work

in literature regarding iterative synchronization. In Chapter 3, we derive the CRB

for various timing models, namely constant offset, frequency offset, random walk and

a combination of these. In Chapter 4, we discuss the conventional PLL-based timing

recovery method for magnetic recording channels and compare it to the CRB. In

Chapter 5, we propose the gradient search based methods to achieve the CRB in the

case of the frequency offset, and also the MAP algorithm for the random walk case. In

Chapter 6, we discuss the problem of acquisition. We prove that to minimize the CRB,

4

we need to keep half the known symbols at the beginning of the packet and half at the

end. Also, we demonstrate by simulation that this arrangement greatly reduces the

occurrence of cycle slips when we have a frequency offset timing model. In Chapter 7,

we propose iterative timing recovery, and also present simulation results to show the

gains that can be achieved using iterative timing recovery and the associated cycle

slip detection and correction methods. Finally, we present conclusions and future

work in Chapter 8.

5

CHAPTER 2

BACKGROUND INFORMATION

In this chapter, we present background information on the magnetic recording chan-

nel, the timing recovery problem, the conventional coded system considered in this

thesis, and also on iterative approaches to synchronization in the literature.

In this thesis, we consider the general problem of timing recovery for channels with

inter-symbol interference (ISI) and baud-spaced sampling. The magnetic recording

system that we consider is an example of such a channel, and a significant portion of

the simulation results presented here are based on the magnetic recording channel.

The bounds and the algorithms presented in the following chapters, however, are

more general and are not limited to the magnetic recording channel.

In Section 2.1, we give a brief overview of digital magnetic data storage based on

hard drives. In Section 2.2, we give a brief overview of the timing recovery problem

and review the conventional timing recovery method used in hard drives. In Sec-

tion 2.3, we present a description of the conventional coded system that uses iterative

error-control codes, and also of turbo equalization. In Section 2.4, a summary of

related work on iterative synchronization is provided. Finally, the chapter is summa-

rized in Section 2.5.

2.1 Magnetic Recording

An important factor in the explosion of computational abilities that is being witnessed

today is the ability to store and access large amounts of data quickly and efficiently.

Modern computers and, increasingly, a large number of other devices as well, use

digital magnetic storage for this purpose. Digital magnetic storage involves storing

6

data based on the direction of magnetization of magnetic media. In the following

subsections, we present a brief overview of magnetic recording based on material in

[8], [32], and [15]. The reader is referred to the following references for more detailed

expositions: [8], [32], [38], [28].

2.1.1 History

Earliest recording techniques for computers involved paper, in the form of either punch

cards or paper tape, where the information was stored by either punching or writing

on paper [32]. This method was painstaking and slow, and the medium was not very

durable. The next big advance was the introduction of magnetic tapes, where data

was recorded and read out in a fashion similar to that of an audio tape. The main

disadvantage with magnetic tapes is that the data can be accessed only in a linear

fashion, as opposed to the more desirable random access. Floppy disks, introduced

next, allowed random access, though the storage capacity and access speed were still

relatively low.

The earliest experimental disk drives were rotating cylindrical drums, coated with

magnetic material, on which the data was stored [32]. An improvement over this was

the hard disk drive, where the data was stored on a magnetic disk, and data was

written and read out using an electro-magnetic head. A main disadvantage with this

technology was that the head was in contact with the medium leading to wear and

tear. The innovation that literally allowed magnetic storage technology to take off

was the realization that it is possible to suspend the head on the medium with an

air gap and still be able to read the data stored in the medium as the head flies over

the rotating medium. The first production hard drive based on this principle was

introduced in 1956 by IBM and was called the IBM 305 RAMAC[32].

Further advances led to reduction in the air gap size, better magnetic heads, more

aerial density for the information bits, and all of these factors led to a significant

7

reduction in the size of the drives, and at the same time, a great increase in the data

storage capacity of the drives. Currently, hard drives are the dominant medium of

data storage, with almost every PC equipped with one. Of late, hard drives have

started to appear in hand-held devices and consumer electronic devices as well.

2.1.2 Operational Overview

Hard drives store information on circular magnetic disks, also known as platters.

Each platter has magnetic material coated on both the surfaces. On each surface,

data is stored along concentric circles called tracks. Each track is further subdivided

into sectors, each of which holds 512 bytes of data.

The platters are mounted by cutting a hole through their centers and stacking

them up on a spindle. The spindle is attached to a spindle motor which rotates the

platters at a high speed. Data is written to and read from the medium by an electro-

magnetic device called the head. Multiple heads are employed, with each surface

being accessed by a head devoted to it. The head flies over the medium as it rotates,

and reacts to the magnetization of the medium. During the write process, information

to be stored is transformed into an electrical signal and fed to the head, which in turn

magnetizes the underlying medium. During the read process, the head interacts with

the magnetic field of the medium and produces an electrical signal which can then be

converted back into the data bits.

Earlier hard drives, called ferrite heads, used a coil to convert the signals between

the electrical and the magnetic domains. Ferrite heads are well-suited for the write

process because the strength of the magnetic field can be increased by simply increas-

ing the number of coils. But doing this, conversely, makes the read process difficult.

Newer drives use magneto-resistive (MR) heads for the read process, and this allows

much higher areal data storage densities. MR heads use certain materials that change

their resistance based on the magnetic field they are subjected to are used. MR heads

8

are much more sensitive to changes in magnetic fields and are thus better suited to

the read process. Therefore, the read and the write processes are assigned to two

different heads: an MR head for reading, and a ferrite head for writing.

Based on the giant magneto-resistive (GMR) property, a new class of heads known

as GMR heads was introduced in 1997, and this led to a further increase in the areal

storage density [32]. In summary, magnetic storage technology has been steadily

improving, providing better storage devices, and entering newer application markets.

From a communication point of view, the read and the write processes introduce

ISI, and thus can be seen as a channel. We need to perform equalization at the

receiver to combat inter-symbol interference (ISI) due to the channel. In addition, we

have run-length limited (RLL) encoding, error-control coding (ECC), and precoding

at the transmitter. And at the receiver, we need to undo the effect of all the three

operations to finally arrive at the user data.

Source
ECC

Encoder Modulator

Channel

SamplerEqualizer
ECC

Decoder

RLL
Encoder

ECC
Decoder

RLL
Decoder

Figure 1: System block diagram from a communications point of view.

The block diagram of a magnetic data storage system from the communications

point of view is shown in Figure 1. The data from the source or the user are first

encoded by the ECC encoder. The ECC encoded bits are then encoded by an RLL

encoder to satisfy the run-length constraints of the system. These RLL-encoded bits

9

are then precoded if necessary. Finally, the discrete-time information in the form of

the precoded bits is converted into a continuous-time signal suitable to be put on

to the channel. At the receiver, we perform sampling and equalization to undo the

channel distortion and get back from the continuous-time domain to the discrete-time

domain. For simplicity, in the block diagram, we have shown the sampling preceding

the equalization. In practice, part of the equalization is done before the sampling, as

explained in the following subsections. After equalization, RLL decoding and ECC

decoding are performed to finally arrive at the receiver’s estimate of the transmitted

user information.

In the following subsections, we look into these components in slightly more detail.

2.1.3 Write

Although Magnetic recording is inherently a non-linear process, it can be made ap-

proximately linear by clever signal processing [8]. Consider, for instance, longitudinal

recording, where a signal current is applied to the magnetic head and the resulting

flux magnetizes the medium longitudinally, i.e., along or against the direction of rel-

ative motion of the head and the medium. If the input signal is a binary signal of

sufficient amplitude, the medium is magnetized to saturation in one of two opposite

directions. In this case, the write process is essentially linear. For this reason, prac-

tical magnetic storage systems use binary saturation recording, where the medium is

magnetized to saturation along one of two directions.

The write process is fraught with non-idealities like non-zero transition width, hys-

teresis, demagnetizing fields due to adjacent transitions, overwrite noise and transition

noise [8]. As a result, the transitions, where the magnetization changes direction, are

randomly shifted with respect to the ideal locations, and also are zig-zag instead of

being straight lines. When adjacent zig-zag transitions come into contact, partial

erasures result. Random shifts of the transitions degrade the signal-to-noise ratio

10

(SNR) of the channel.

2.1.4 Read-back

The read-back process with binary saturation recording is also essentially linear [8].

During read-back, the head moves over the medium and responds to the transitions

in the direction of magnetization. For an isolated transition, it produces a pulse g(t)

or its inverse −g(t) depending on the direction of magnetization. The pulse g(t) is

called the transition response and is usually modeled as a Lorentzian pulse given by

g(t) =
T

πt50

1

1 +
(

2t
t50

)2 ,

where t50 is the pulse width of g(t) at half amplitude, and T is the symbol duration,

i.e., the minimum spacing between two transitions. The parameter D = t50/T is the

information density and is a normalized measure of how many bits are packed into the

resolution unit t50. The response of the head to a single isolated symbol, consisting

of an two transitions spaced by T, is f(t) = g(t)− g(t− T) and is called the symbol

response.

An important parameter that characterizes a magnetic medium is the minimum

mark size, which is the minimum separations required between successive transitions

for these to be distinguishable for the detector. This parameter depends on both the

write and the read mechanisms employed.

2.1.5 Equalization

The traditional method of reading data from a hard drive is the peak detect method.

The detector detects magnetic flux reversals in the channel, and this results in voltage

spikes in the electrical circuit. This method works as long as the spikes are far apart

and strong enough when compared to the background noise. As the data densities

increase, these conditions are no longer satisfied, leading to SNR degradation and ISI.

11

Magnetic channels are band-pass, exhibiting a null at dc. Therefore, full-response

equalization leads to noise enhancement at low frequencies. The partial response

maximum likelihood (PRML) technique gets around this problem by breaking the

equalization down into two steps [15]. First, we equalize to a target that allows

controlled ISI. An example of a controlled-ISI channel is the class-IV partial response

(PR) target, also called the PR-IV response. The impulse response of the PR-IV

channel is represented by the polynomial 1−D2, where D is the delay operator. In

words, the PR-IV symbols dk are given by dk = ak − ak−2, where {ak} is the data

written into the channel.

The read-back waveform is filtered by a front-end filter to eliminate the out-of-

band noise, and equalized to a partial response target to result in

r(t) =
∑

akh(t− kT − τk) + n(t), (1)

where T is the symbol duration, ak ∈ {−1,+1} are the precoded symbols (precoded to

combat error propagation), h(t) is the pulse shape corresponding to the controlled-ISI

target, n(t) is Gaussian noise band-limited to [−1/2T, 1/2T], and τk is the unknown

timing offset for the kth symbol. This completes the first stage of PRML equalization.

The waveform r(t) is then sampled by the timing recovery block to produce samples

{rk}.

Then, maximum likelihood sequence detection (MLSD) using the Viterbi algo-

rithm [23] is implemented on the trellis resulting from the controlled ISI. Noise en-

hancement is greatly reduced since the partial response target exhibits a null at dc

and at the Nyquist frequency, and also in the frequency domain, its shape is similar

to the channel response itself. Furthermore, for the PR-IV target, MLSD achieves

the matched-filter bound and therefore, the resulting error probability is similar to

that with no ISI [8].

12

2.1.6 Timing Recovery

After the first step of equalization to a PR target, the waveform r(t) is then sampled

at time instants kT + τ̂k chosen by a timing recovery device, leading to samples rk.

These samples are then used to perform the ML equalization step to complete the

equalization process. Details regarding the conventional timing recovery method used

for magnetic recording are provided in Section 2.2.

2.1.7 Precoding

A portion of the equalization task can be shifted to the transmitter by precoding the

data symbols at the transmitter. Instead of the data symbols themselves being written

to the channel, we precode the data symbols and these new precoded symbols are

written to the channel. With knowledge of the channel characteristics, the precoder

can be chosen to partly undo the channel distortion, thus reducing the equalization

burden at the receiver. Precoders can also be chosen to prevent catastrophic error

propagation. For the PR-IV system, for example, in our simulations, we employ the

precoder denoted by the polynomial fraction 1/(1 ⊕ D2) [24] [15]. The precoded

symbols {bk} are arrived at from the data symbols {ak} according to bk = bk−2 ⊕ ak.

2.1.8 Run-length Limited Codes

RLL codes are modulation codes, used to modify the bit pattern to suit the channel

requirements. The earlier modulation scheme used were the frequency modulation

(FM), or the modified frequency modulation (MFM) schemes [8]. With FM, the

number of flux reversals for a ’1’ and a ’0’ are different. MFM is similar to FM in

that different patterns are assigned different number of flux reversals, but it is more

efficient. Even more efficient is the family of RLL codes, which forms the standard

for today’s hard drives.

Optical and magnetic recording channels are examples of constrained channels

where the sequences written into the channel need to satisfy some constraints. A

13

common set of constraints is the family of (d, k)-constraints [37]. Sequences satisfying

the (d, k)-constraint have at least d zeros and at most k zeros separating successive

ones occurring in the sequence. These constraints reduce the ISI in the system by

separating consecutive transitions, and also improve the timing recovery performance

by assuring sufficient transitions.

Another advantage with using RLL codes is that they allow for a higher density

of user bits. With a channel constrained to two levels, the additional restriction of

uniform symbol durations further reduces capacity. In other words, with a two-level

channel, pulse-width modulation has higher capacity when compared to a modula-

tion scheme that uses uniform-width pulses. Pulse-width modulation can be approxi-

mately implemented using an RLL-encoded stream at an artificially high symbol rate.

For example, with a (3, 7)-RLL code, the possible pulse-widths are 4, 5, 6, 7, 8 sym-

bols long, and the corresponding patterns are 1000, 10000, 100000, 1000000, 10000000

respectively. Assigning the minimum mark size to the pattern 1000, we can achieve

pulse-widths of 5L/4, 3L/2, 7L/4 and 2L, where L is the minimum mark size. In-

creasing d and k suitably, we can approximate the pulse-width modulation strategy

better.

The state-splitting algorithm [2] provides a systematic way of constructing run-

length limited codes with state-dependent encoders and sliding-block decoders. An

alternative method of run-length limited encoding and decoding is using the enumer-

ative approach for permutation codes [16].

2.1.9 Error Control Codes

Another type of encoding used is error control coding, used to mitigate the effects

of noise introduced by the channel. Reed-Solomon (RS) codes are a common family

of ECCs used in the recording industry [32]. RS codes are powerful algebraic codes

defined by generator polynomials whose zeros are consecutive powers of a primitive

14

root in a finite field [67]. RS codes are good at handling erasures, and therefore, are

useful in the recording industry where channel imperfections due to scratches can be

effectively modeled as erasures. To further improve the performance with erasures,

interleaved RS codes are used to distribute the erasures over multiple RS-encoded

blocks.

Recently, iteratively decodable codes like turbo codes [9] and low-density parity-

check (LDPC) [25] codes have been proposed for recording applications since their

high coding gains allow for higher recording densities. We employ these codes in

the coded system considered in this thesis. Details on these codes are provided in

Section 2.3.

2.2 Timing Recovery

Source
ECC

Encoder Modulator

Channel

SamplerEqualizer
ECC

Decoder

RLL
Encoder

ECC
Decoder

RLL
Decoder

Discrete Continuous
timetime

Figure 2: Continuous-time discrete-time interface.

Timing recovery is an essential part of digital communication and storage systems.

The underlying physical channel is analog in nature whereas the user data is digital.

At the transmitter, we obtain a continuous-time signal from the discrete-time user

15

data by modulation. From the sampling theorem, we know that it is sufficient to

collect samples of this waveform taken so that the Nyquist criterion is satisfied. In

other words, through appropriate sampling, we can undo the modulation performed

and get back to the discrete-time domain. The interface between the discrete and the

continuous domains is shown in Figure 2.

0 T 2T 3T

τ0 τ1 τ2
–τ3

a1a0

a2

a3

TIME

Figure 3: Timing jitter in communication systems.

Figure 3 shows an example of a modulation scheme used in communication sys-

tems. The modulator uses the data symbols {ak} to modulate a pulse shape h(t), and

the final waveform on the channel is obtained by shifting consecutive scaled pulses

by the symbol duration T and adding them. We assume that h(t) is band-limited

such that baud-rate samples are sufficient statistics at the receiver. This modulation

scheme is called pulse-amplitude modulation (PAM). Other techniques like frequency

modulation exist, but we concentrate on PAM. Ideally, the pulses are all shifted with

respect to each other by multiples of T , and therefore, at the receiver, it is sufficient

to sample at multiples of T once we have the correct initial sampling instant. How-

ever, in practice, different pulses in the waveform suffer from timing jitter, with the

kth pulse having a timing offset of τk from the ideal location kT . The ideal sampling

instants now are kT + τk instead of kT , and the timing recovery problem now is that

of estimating the timing offsets {τk}.

The maximum-likelihood (ML) timing estimator picks the timing offset estimates

16

τ̂k to minimize the cost function J(τ̂ ;a), where

J(τ̂ ;a) =
∫ ∞
−∞

(r(t)−
∑
l

alh(t− lT − τ̂l))2 dt, (2)

where r(t) is the received waveform. This represents the trained ML estimator, where

the data symbols {ak} are assumed to be known at the receiver. The ML timing

estimator is prohibitively complex except in a few simple cases. In general, suboptimal

timing recovery methods are used that allow practical implementation at the cost of

performance.

2.2.1 Classification

Timing recovery methods can be broadly classified in two different ways [39]. The first

classification is in terms of structure: feedforward vs. feedback. Another classification

is in terms of decisions: decision-aided vs. non-decision-aided. Combining these two

modes of classification, we have four types of systems, and each of these types has its

own set of advantages and disadvantages.

An important sub-category of timing recovery methods can be described as follows.

The incoming signal is first passed through a non-linearity and the resulting output

is either filtered using a narrow-band filter or fed to a phase-locked loop (PLL). With

a narrow-band filter, we get the feedforward structure, and with the PLL, we have

the feedback structure.

If the non-linear operation uses decisions about the transmitted data symbols, we

have the decision-aided case, else the non-decision-aided case. An example of a non-

decision-aided non-linearity is the squarer. For certain systems, a simple squaring

of the incoming waveform generates a spectral line at the channel symbol rate, and

this can then be extracted using a suitable narrow-band band-pass filter. Decision-

aided non-linearities combine samples from the received signal with decisions about

the transmitted symbols to generate estimates of the timing error, which can then be

used in a PLL.

17

Another important classification of timing recovery methods is based not on the

structure, but on the purpose they serve: acquisition vs. tracking. These represent

the two phases in conventional timing recovery. At the beginning, the receiver has no

information about the start of transmission. Also, the receiver has information about

the nominal clock rate, and not the actual clock rate. During acquisition, the main

tasks are to estimate the start of transmission, and the actual clock rate used at the

transmitter. During tracking, these estimates are further refined and changes in the

timing parameters are tracked.

Another classification is baud-spaced vs. fractionally-spaced, depending on the

number of samples per symbol duration. In applications where the symbol rate is

low enough, we can oversample the received signal to get multiple samples per sym-

bol, and this allows for timing recovery methods that have low-complexity and good

performance. In applications with high symbol rate, for example magnetic recording,

the signals are oversampled to allow for roll-over of the channel impulse response.

Oversampling further to aid timing recovery by having many samples per symbol is

not feasible as this would lead to a reduction in the data storage density. In this case,

we use baud-rate timing recovery methods.

For many applications, including magnetic recording, the decision-aided PLL-

based method is the timing recovery method of choice in the tracking mode. For

acquisition, either correlation methods, or trained (data-aided) PLL-based methods

are used. Therefore, we focus our attention on the decision-directed PLL in the sequel.

Keeping the magnetic recording channel in mind, we consider baud-spaced, decision-

aided, PLL-based timing recovery as the conventional timing recovery method.

2.2.2 PLL-based Timing Recovery

In a conventional system, the different blocks shown in the block diagram of Figure 2

are designed independently, assuming that the other blocks function perfectly. For

18

timing recovery methods, the implication of this is the assumption of i.i.d. data

symbols. With coding, however, the data symbols are not independent. However,

for capacity-achieving codes being proposed for the magnetic recording systems, the

i.i.d. assumption is approximately valid. Therefore, to a first order approximation,

we can neglect coding, especially at high SNR, when there are few errors.

The block diagram of the uncoded system under consideration is shown in Figure 4.

The channel output waveform y(t) is given by

uncoded i.i.d.
� h(t)

n(t)

y(t)
fakg

N�1

0

Figure 4: System block diagram with timing offsets, channel distortion and additive
noise.

y(t) =
N−1∑
l=0

alh(t− lT − τl) + n(t), (3)

where T is the bit period, al ∈ {±1} are the N i.i.d. data symbols, h(t) is the channel

impulse response, n(t) is additive white Gaussian noise, and τl is the unknown timing

offset for the lth symbol. After low-pass filtering y(t) at the receiver to remove the

out-of-band noise, the resulting continuous-time waveform r(t) can be modeled as

r(t) =
∑
l

alh(t− lT − τl) + n1(t), (4)

where n1(t) is band-limited to [− 1
2T
, 1

2T
). The continuous-time waveform r(t) is then

sampled at timing instants kT + τ̂k based on the estimates {τ̂k} of {τk} produced by

the timing recovery system. Ideally we would like to sample at instants {kT + τk}.

Conventional timing recovery based on a PLL is shown in Figure 5. A first-order

PLL updates its estimate of τk according to

τ̂k+1 = τ̂k + αε̂k, (5)

19

PLL
UPDATE

f(t)
y(t)

rcv. filter

T.E.D.

kT + kτ̂

rk
for further

kε̂

r t()

processing

Figure 5: Conventional timing recovery.

where α is the PLL gain, and where ε̂k is the receiver’s estimate of the estimation

error εk = τk − τ̂k. Timing error estimation is discussed in Section 2.2.3. The PLL

update equation can be intuitively explained as follows. Assume that the timing

offset is a constant. At the kth sampling instant, the timing recovery block has access

to the current estimate τ̂k and also an estimate of the timing error εk given by ε̂k.

If this estimate were accurate, then the receiver would simply add ε̂k to τ̂k to get

τk and use this as τ̂k+1 since this is the actual timing offset. However, in practice,

what is available is a noisy estimate of εk, ε̂k, and the PLL multiplies ε̂k by a factor

α that determines the extent to which we attenuate the noise in the timing error

estimate. A smaller α attenuates the noise better but leads to a larger rise-time while

tracking a constant offset. Also, when tracking a time-varying timing offset, a smaller

α limits the PLL’s ability to track the variations. Therefore, in practice, α is chosen

to strike a balance between these competing criteria: smaller rise time and good noise

attenuation. A first-order PLL tracks a constant timing offset with zero steady-state

error, but when faced with a frequency offset, it shows a non-zero steady-state error

[64].

20

For zero steady-state error while tracking a frequency offset, we employ a second-

order PLL which updates the estimate of τk according to

τ̂k+1 = τ̂k + αε̂k + β
k−1∑
l=0

ε̂l, (6)

where we have an additional gain parameter β. The accumulator output δ̂k =
∑k−1
l=0 ε̂l

tracks the average behavior of ε̂k. A positive δ̂k implies that, on an average, ε̂l tends

to be positive. In this case, it would be useful to add a positive quantity to the timing

estimate τ̂k+1 from a first order PLL. As ε̂k is a noisy version of εk, the gain parameter

β helps attenuate the timing error estimation noise.

A second-order PLL gives us the advantage of being able to track a frequency

offset with zero steady-state error, but it has the problem of possible instability. To

illustrate this, consider the linearized model where the timing error detector (TED)

that produces the timing error estimates ε̂k is assumed to be linear, i.e., we assume

that

ε̂k = εk + νk, (7)

where the noise terms {νk} are assumed to be i.i.d. and independent of {εk}. Taking

the z-transform of (6), the transfer function of the second-order PLL is given by

τ̂(z) = (τ(z) + ν(z))

[
αz + (β − α)

z2 − (2− α)z + (1− α + β)

]
. (8)

The poles are of this transfer function are at z = 1 − α
2
±
√

α2

4
− β. If β lies on the

range 0 < β < α, these poles lie inside the unit circle and the timing loop is stable.

With 0 < β < α2

4
, the system is under-damped and shows a slow rise-time. When

β > α2

4
, the system is over-damped and shows oscillatory behavior. The choice β = α2

4

represents the critically damped system that has both its poles at 1 − α
2
. The fact

that the linearized analysis guarantees a stable system if we ensure 0 < β < α is not

a very useful result as, in practice, the TED is not linear and the second-order PLL

could become unstable even with 0 < β < α. For example, a second-order PLL, with

21

low enough SNR, occasionally diverges while tracking a frequency offset even with

the gains being in the range suggested by the linearized analysis.

2.2.3 Timing Error Detector

Consider first the trained case when the transmitted symbols {al} are available at the

receiver. A timing error detector (TED) produces an estimate ε̂k based on channel

observations {rl} and the data symbols {al} [44] [15] [39]. Data symbols {al} are

used to generate noiseless, perfectly-timed samples {dl} and the TED generates ε̂k as

a function of these samples {dl} and the actual samples {rl}. The samples {dk} are

given by

dk =
∑
l

alh(kT − lT). (9)

In the absence of training, the TED operates in the decision-directed mode, where it

uses decisions {âl}. Without training, we generate an estimate of dk as

d̂k =
∑
l

âlh(kT − lT). (10)

Therefore, instead of symbols {ak} modulating the pulse shape h(t), the channel can

alternatively be viewed as symbols {dk} modulating the pulse shape sinc(t/T), which

is a Nyquist pulse. For example, for the PR-IV channel, if {ak} are i.i.d. and equally

likely to be +1 or −1, dk takes on values −2, 0 and +2 with probabilities 0.25, 0.5 and

0.25 respectively. In the decision-directed case, one way to obtain the estimates {d̂k}

is by simply hard-quantizing the received samples {rk} to three values {−2, 0,+2}.

In the decision-directed case, the TED produces an estimate ε̂k based on channel

observations {rl} and the estimates {d̂l}. In general, the TED equation can be written

as

ε̂k = fk({rl}, {d̂l}), (11)

where fk is some function. The widely used Müller and Mueller (MM) TED [44]

generates ε̂k according to

ε̂k = rkd̂k−1 − rk−1d̂k. (12)

22

The MM TED can be made unbiased around the origin (E[ε̂|ε] = ε for small ε) by

introducing a scaling constant. For the PR-IV channel, assuming perfect decisions,

the unbiased MM TED equation is

ε̂k =
3T

16

(
rkd̂k−1 − rk−1d̂k

)
. (13)

The performance of TEDs can be evaluated using the so-called S-curve [44] [15],

which is a plot of the average timing error estimate (E[ε̂|ε]) as a function of the

actual timing error (ε). Ideally, we would like this to be a straight line of unit slope

passing through the origin. In addition to the mean of the error estimate (also called

the timing function), we also plot the second moment of the error estimate. For

the unbiased MM TED with the PR-IV channel and with ideal decisions, the timing

function evaluates to [15]

E[ε̂|ε] =
3T

16
(h(−T + ε)− 2h(T + ε) + h(3T + ε)) ,

=
3T

16
(−p(−3T + ε) + 3p(−T + ε)− 3p(T + ε) + p(3T + ε)) , (14)

where p(t) = sinc(t/T).

The timing function in the decision-directed case is arrived at by simulation. The

normalized timing function (i.e., E[ε̂|ε]/T vs. ε/T) and the second moment of the

timing error for both these cases (labeled “Ideal” and “Hard” corresponding to the

ideal and the hard-quantized decisions respectively) are plotted in Figures 6 and 7

respectively for SNR = 10dB. In the ideal case, the timing function is independent of

the channel SNR and only the error variance depends on the SNR. In the decision-

directed case, both the timing function and the error variance depend on the SNR

[15]. The curves labeled “Soft” are for the case of soft decisions in the TED and will

be discussed later in this section.

The ideal MM TED has a large linear range where the timing function can be

approximated by a straight line of unit slope passing through the origin. The actual

23

–0.5 –0.25 0 0.25 0.5
–0.5

–0.25

0

0.25

0.5

ε/T

E
[

 |
ε]

/
T

ε̂

Ideal

Hard, Soft

Figure 6: Timing function for the MM TED on the PR-IV channel.

timing error in the system is ε and ε̂ is the amount by which we correct the timing

estimate. The decision-directed case shows linear behavior in the approximate range

ε/T ∈ (−0.2, 0.2) beyond which |ε− ε̂| increases dramatically. Therefore, in the linear

region, the TED (and the PLL) tracks the timing offsets well. Outside this region,

as ε increases, ε̂ decreases and therefore, the PLL pulls farther and farther away from

the actual timing offset. Zero crossings of the timing functions represent stable points

of operation for the PLL and the decision directed MM TED has a zero crossing at

around ε/T = 0.3 and at ε/T = 0.5 for the SNR considered above. Therefore, if we

start with an offset of ε/T = 0.3 at this SNR, for example, it is only noise perturbation

and pattern-dependent jitter that can push us out of the equilibrium.

In addition to ε/T = 0.3 and ε/T = 0.5, the PLL also exhibits stable points

of operation at ε = ±T,±2T, ... A transition from the origin to any of these, or a

transition among these stable points, represents a cycle slip. An example of a cycle

slip is shown in Figure 8, where τ̂ equals τ at the start of the packet, but by the

end of the packet, τ̂ differs from τ by approximately −T . When a cycle slip occurs,

24

–0.5 –0.25 0 0.25 0.5
0

0.1

0.2

0.3

ε/T

E
[

|

 ε
]/

T
2

ε̂2

Ideal

Soft

Hard

Figure 7: Timing error second moment for the MM TED on the PR-IV channel.

the receiver gains or loses data symbols and this has disastrous consequences for the

processing that follows. The PLL operates in a bimodal fashion where it is in the

linear mode around a stable operating point for most of the time, and once in a

while, it chaotically enters a non-linear mode before settling down on another stable

operating point that is offset by a multiple of T , and this corresponds to a cycle slip.

At start-up, we try to locate the stable point at the origin and then in the tracking

mode, we try to continue being in the linear region to prevent the occurrence of cycle

slips. One method to do this is to improve the performance of the TED in the linear

mode by operating closer to the origin a greater proportion of the time, thus reducing

the probability of occurrence of cycle slips, otherwise called loss-of-lock.

Performance of the Mueller and Müller TED can be improved by using soft esti-

mates d̃k in place of hard estimates d̂k. A good candidate for the soft-decision d̃k is the

minimum-mean-squared error estimate of dk given rk, or equivalently d̃k = E[dk|rk].

For the PR-IV channel, this leads to a memoryless soft slicer of the form

d̃k =
2 sinh(2rk/σ

2)

cosh(2rk/σ2) + e2/σ2 . (15)

25

0 2050 4100
–3T/2

–T

–T/2

0

T/2

T

Time (in bit periods)

T
im

in
g

E
st

im
at

e

Actual τ

τ̂

Figure 8: An example of a cycle slip.

The details of the derivation are in Appendix A. The normalized timing function for

this soft MM TED is plotted in Figure 6 for SNR = 10 dB and denoted by “Soft”.

The timing function is almost identical to that of the hard decision case, but the error

variance is lower. (See Figure 7.) The gap between the hard and the soft decision

cases increases as the SNR decreases.

2.3 Conventional Coded System

So far, we have analyzed the timing recovery mechanisms for the uncoded system in

some detail. However, practical systems employ equalization to combat channel dis-

tortions and also error control coding to combat errors introduced by the channel. In

this section, we present some coding and equalization techniques used in conventional

systems. In the Chapter 7, we present iterative timing recovery, which is an extension

of the turbo principle to timing recovery, whereby timing recovery benefits from the

presence of the error control code.

At the transmitter, the message bits to be transmitted to the receiver are first

encoded using an error control encoder and then transmitted through a channel which

26

ECC
Encoder

Channel
Distortion

Additive
Noise

+
Message Received

Waveform

Figure 9: General block diagram of a coded system.

introduces distortion and additive noise, as shown in Figure 9. The receiver needs

to undo the effects of both the channel (equalization) and the encoder (decoding) to

recover the message bits.

We first discuss iterative error control codes which offer very low error rates [9]

[25]. Next, we look at two different receiver architectures: one where equalization and

decoding are performed sequentially; and another where equalization and decoding

are performed jointly. The second architecture is called turbo equalization [54] and

significantly outperforms the system where equalization and decoding are performed

separately. In a conventional setting, the turbo equalization would be preceded by

the timing recovery mechanism. In Chapter 7, we propose iterative timing recovery

where turbo equalization and timing recovery are performed jointly, and this allows

further improvements in performance.

Error control codes (ECCs), also called forward error-correction codes (FECs),

are used to combat noise and errors introduced by the channel. Traditionally, ECCs

have been categorized into block codes and convolutional codes. A new class of

ECCs with iterative decoding techniques approach the Shannon channel capacity

much closer than possible with conventional coding techniques. We consider two

classes of iterative ECCs: turbo codes and low-density parity-check (LDPC) codes.

2.3.1 Turbo Codes

Turbo codes [9] are concatenated convolutional codes. The key to the good perfor-

mance of turbo codes lies in the decoding algorithm. For the concatenated system,

27

instead of decoding the constituent codes independently, the decoders exchange infor-

mation about the transmitted symbols and this improves performance significantly.

First, we start with a brief description of the encoding and decoding of convolutional

codes.

2.3.1.1 Convolutional Codes

D D

+

+

D D

+

D D+

(a)

(b) (c)

Figure 10: (a) A convolutional encoder; (b) a systematic convolutional encoder; and
(c) a recursive systematic convolutional (RSC) encoder.

Error control codes work by introducing effective redundancy to the bit stream

to be encoded. Convolutional codes use linear shift registers to do so [67]. The

convolutional encoder acts on the input message stream and produces one or several

output streams. The encoder consists of memory elements and modulo 2 adders.

An example rate-1/2 encoder is shown in Figure 10(a). The memory elements are

denoted by the symbol D. Convolutional encoders can be conveniently represented

using the polynomial notation. An encoder is denoted by the polynomial
∑
i aiD

i,

where ai = 1 if the i-delayed version of the input stream contributes to the output.

For example, the encoder of Figure 10(a) is denoted by the pair [1 ⊕ D, 1 ⊕ D2].

A systematic encoder is one where the input message stream appears intact at the

28

output. Figure 10(b) is an example of a systematic encoder. A recursive encoder is

one where we have feedback, an example of which is in Figure 10(c). Figure 10(c) is, in

fact, an example of a recursive systematic convolutional (RSC) encoder characterized

by the polynomial pair [1, 1/(1⊕D2)].

00 10

01 11

0 / 00

1 / 11

1 / 10

0 / 10
1 / 01

1 / 00

0 / 11

0 / 01

Figure 11: An example state diagram.

The analysis of convolutional codes is facilitated through the use of state diagrams.

The contents of the memory elements constitute the state of the convolutional encoder

and the encoding process can be thought of as a walk on the state diagram. The state

diagram corresponding to the the example in Figure 10(a) is shown in Figure 11. Since

we have two memory elements, we have four possible states denoted by 00, 01, 10 and

11 corresponding to the memory contents read from left to right. Possible transitions

are shown by edges and the values (x/y1y2) along the edges are the input x and the

outputs y1 and y2 from the top and the bottom branches respectively corresponding

to that transition.

A trellis diagram is an alternative representation of the convolutional encoder

that explicitly shows the passage of time. For example, a part of the trellis diagram

corresponding to the state diagram of Figure 11 is shown in Figure 12. All the

possible states of the system at any time instant k are plotted vertically. The kth

stage of the trellis represents all possible valid transitions of the encoder from a state

at time instant k to another state at instant k+ 1. The complete trellis is formed by

replicating this stage as many times as needed. The branches (edges) are labeled in

29

00

01

10

11

0 / 00

1 / 11

0 / 0
1

1 / 10

0 / 1
0

1 / 00

0
/ 1

1 1 / 01

Time k Timek+1

Stage k

Figure 12: An example trellis diagram.

the same way as in the state diagram. A path through a trellis is a connected set of

branches such that there is one branch for every stage. Every codeword is associated

with a unique path through the trellis.

Convolutional codes have a linear-time decoder based on the Viterbi algorithm

[23], which is a maximum-likelihood sequence estimator based on the trellis of the

code. The outputs of the Viterbi decoder are hard decisions on the transmitted sym-

bols. When convolutional codes are used as constituent codes in turbo codes, we need

soft information about the transmitted bits and this is got by performing decoding

based on the BCJR algorithm [3] as opposed to the Viterbi algorithm. The BCJR

algorithm operates on the same trellis as the Viterbi algorithm and performs the

maximum a posteriori estimation of the transmitted bits and outputs the a posteriori

probability density associated with each code bit. The Viterbi algorithm outputs the

most likely sequence of symbols whereas hard quantizing the output of the BCJR

algorithm gives the sequence of most likely symbols.

30

2.3.1.2 The BCJR Algorithm

In this section, we present a summary of the BCJR algorithm [3] [5]. Let a =

[a0, a1, · · · aK−1] be the message transmitted, and let c = [c0, c1, · · · cN−1] be the

codeword. We assume that the message symbols are drawn from an alphabet A. Let

µ be the memory of the encoder. Let r = [r0, r1, · · · rK+µ−1] be the observation

vector at the receiver where we have grouped the observations into K + µ group

corresponding to the K + µ stages of the trellis. Since this is a rate K/N code, each

message bit produces N/K (assuming it is an integer) code bits and therefore, N/K

observations correspond to a trellis stage. This procedure can be modified suitably for

the case where N/K is not an integer by having each stage correspond to K message

bits and N code bits.

The MAP detector is the one that picks a to maximize the a posteriori probability

Pr[ak = a|r] for each k, where a ∈ A. Let Sa denote the set of pairs (p, q) such that

a branch from a state p to a state q corresponds to an input symbol a. Let ψk be the

state of the encoder at time k. Then, we can rewrite the a posteriori probability as

Pr[ak = a|r] =
∑

(p,q)∈Sa

Pr[ψk = p;ψk+1 = q|r]. (16)

In effect, we have rewritten the symbol a posteriori probability in terms of the a

posteriori probabilities of the transitions.

Using the Markov property of the encoder, the BCJR algorithm splits this a

posteriori transition probability into three factors as follows: [3]

Pr[ψk = p;ψk+1 = q|r] = p(ψk = p; rl<k) p(ψk+1 = q; rk|ψk = p) p(rl>k|ψk+1 = q) / p(r),

(17)

where we have separated the observation vector r into three components rl<k, rk and

rl>k corresponding to the past, the present and the future symbols respectively with

respect to the current index k. Defining

αk(p) = p(ψk = p; rl<k),

31

γk(p, q) = p(ψk+1 = q; rk|ψk = p) and

βk+1(q) = p(rl>k|ψk+1 = q), (18)

we get

Pr[ψk = p;ψk+1 = q|r] = αk(p) × γk(p, q) × βk+1(q) / p(r). (19)

αk(p) is a function of the state p at time k that depends only on the past observations,

and βk+1(q) is a function of the state q at time k+ 1 that depends only on the future

observations. γk(p, q) is a probability measure associated with a branch connecting

state p at time k and state q at time k+1, and depends only on the current observation.

The trellis representation of the encoder allows a recursive computation of the of

αk+1(q) in terms of αk(p) and γk(p, q) as follows.

αk+1(q) =
Q−1∑
p=0

αk(p)γk(p, q), (20)

where Q is the total number of states possible at any time instant. Similarly, we have

the following recursion for βk(p) in terms of βk+1(q) and γk(p, q).

βk(p) =
Q−1∑
q=0

βk+1(q)γk(p, q). (21)

The branch metrics γk(p, q) depend on the channel. Consider the AWGN channel

with rk = ck + nk, where the noise variables {nk} are i.i.d. zero-mean Gaussian

random variables of variance σ2. The branch metric in this case is

γk(p, q) =
1

2πσ2
exp

{
−|rk − c

(p,q)|2

2σ2

}
Pr[ak = a(p,q)], (22)

where a(p,q) and c(p,q) are respectively the input and the output symbols associated

with the transition from state p to state q. As opposed to the Viterbi algorithm, in

the BCJR algorithm, we make two passes through the trellis. In the forward pass,

the values of αk(p) are computed, and in the backward pass, the values of βk(q).

The outputs of the BCJR algorithm, i.e., the probability values Pr[ak = a|r] for

all k and for all a ∈ A, constitute the desired soft information. When we are dealing

32

with the binary alphabet {−1,+1} the soft information is usually expressed as the

logarithm of the ratio of the two probabilities, called the log likelihood ratio (LLR).

The LLR (λ) is

λk = log
Pr[ak = 1|r]

Pr[ak = −1|r]
,

= log

∑
(p,q)∈S1

αk(p) γk(p, q) βk+1(q)∑
(p,q)∈S−1

αk(p) γk(p, q) βk+1(q)
. (23)

2.3.1.3 Parallel Turbo Codes

E1

E2

π

m

m’

m

p1

p2

Figure 13: A parallel turbo encoder.

The encoder of a parallel turbo code is a parallel concatenation of two systematic

recursive convolutional encoders (E1 and E2). Since both the encoders are systematic,

one of the systematic branches can be dropped. Also, the message stream m is

interleaved to get m′, which serves as the input to one of the recursive encoders.

Thus, at the encoder output, we have three streams: the message stream m and

the two parity streams p1 and p2 from E1 and E2 respectively. This structure is

shown in Figure 13. This is an example of a rate-1/3 parallel turbo code. The three

streams are then interleaved and transmitted over the channel. At the receiver, the

observations are separated into three streams rm, r1 and r2 corresponding to m, p1 and

p2 respectively. The receiver consists of two soft-input soft-output decoder blocks (D1

and D2) based on the BCJR algorithm. The decoder D1 corresponds to the encoder

E1 and D2 corresponds to E2. The important innovation in decoding for the turbo

codes is the fact that the decoders perform the decoding operation cooperatively by

33

exchanging soft information.

D1

D2

π

π–1

rm
r1

r’m
r2

λ1e

λ2e

Figure 14: A parallel turbo decoder.

At the start of turbo decoding, D1 acts on rm and r1 to produce soft information

λ1 about the message bits. The BCJR block in this case does not have any a priori

information about the transmitted symbols. Then, this soft information λ1 is fed

to D2 as a priori information when it implements the BCJR algorithm using the

interleaved stream r′m (interleaved to match with the interleaved message stream m′)

and r2. Thus, D2 utilizes the information already gleaned by D1. Let λ2 be the LLRs

produced by D2. To ensure that the feedback loop thus formed is stable, we pass

only extrinsic information to D1. Extrinsic information is the information extracted

by the decoder, and is got by subtracting the decoder a priori input from the decoder

output. Denote the de-interleaved extrinsic information output of D2 by λ2e. λ2e is

passed to D1 as a priori information. Similarly, the a priori information for D2 is an

interleaved version of λ1e, the extrinsic output of D1. This turbo decoder structure

is shown in Figure 14.

As iterations progress, the quality of the a priori information available to D1 and

D2 improves, thus improving the quality of the output as well. At the end of turbo

decoding, the final output is in the form of log-likelihood ratios of the form λk =

λ1e,k + λ2e,k + λsys,k, where λsys is the information got directly from the systematic

portion of the observation vector. In other words, λsys,k = log f(rk|ak=1)
f(rk|ak=0)

, where f(·)

denotes the p.d.f. of the observation rk conditioned on the bit ak.

34

2.3.1.4 Serial Turbo Codes

1 1 D⊕,[] 1
1

1 D2⊕
-----------------,π

OUTER INNER

Figure 15: A rate-1/4 serial turbo encoder.

A serial turbo code is a serial concatenation of two convolutional encoders sepa-

rated by an interleaver [61]. An example encoder is shown in Figure 15. This is an

example of a rate-1/4 code with both the outer and the inner codes being of rate-1/2.

The encoders are denoted by the polynomials used to generate the code bits. The

outer encoder is a systematic encoder where the parity bits are generated according to

1⊕D2. For good performance, the inner code has to be recursive [7]. In the example

of Figure 15, the inner encoder is a rate-1/2 systematic recursive encoder where the

feedback path is 1⊕D2 and the parity bits are generated according to 1/(1⊕D2).

INNER
DECODER

a priori

OUTER
DECODER

a priori

π

π−1 +

+

r

λ1e

λ2e

–

–

λ2

0

Figure 16: A serial turbo decoder.

The decoder structure is similar to that of a parallel turbo code in that the soft-in

soft-out decoders corresponding to the two codes exchange soft extrinsic information.

An important difference is that the outer decoder has to now produce soft information

about its coded bits and not just the message bits [7]. Fortunately, this is simple

enough to do by changing the numerator and denominator sets in the log likelihood

evaluation. Instead of using the sets S1 and S−1 corresponding to the message bit

35

being 1 or −1, we now use sets corresponding to the coded bit of interest being 1 or

−1. The inner decoder operates on the channel observations and its extrinsic output

is λ1e. λ1e is the input to the outer decoder, whose output is denoted by λ2. The outer

decoder assumes that the extrinsic output of inner decoder is the channel LLR. The

a priori information for the outer decoder is always set to zero. At the end of turbo

decoding, the systematic portion of λ2 is the desired output. The decoder structure

is shown in Figure 16.

2.3.2 Low Density Parity Check Codes

Turbo codes are based on convolutional codes. In this section, we discuss low-density

parity-check (LDPC) codes [25], which are block codes. Block codes are characterized

by a generator matrix G of dimensions k × n where k is the message length and n

is the codeword length [67]. The codeword c of dimensions 1× n corresponding to a

message m of dimensions 1× k is arrived at by the following operation.

c = mG. (24)

As before, if the message m appears intact in the codeword c, the code is a systematic

code. In this case, after column permutations, the code matrix G can be rewritten

as

G = [Ik×k|P n−k×k] , (25)

where the identity matrix corresponds to the systematic portion and the matrix P

corresponds to the parity bits in the codeword. A block code can alternately be

represented by a parity-check matrix that is formed by the row vectors in the null

space of the rows ofG. The parity-check matrix, denoted byH , is a (n−k)×n matrix

and satisfies HGT = 0. Therefore, for any codeword, we have HcT = HGTmT = 0.

In other words, the rows of H represent the parity-check equations that the bits of c

satisfy. If we have the generator matrix in the systematic form, then the parity-check

36

matrix H is given by

H =
[
−P T |In−k×n−k

]
. (26)

We assume binary codes with codeword entries and the entries in H being from the

set {0, 1}, and the addition operation being modulo 2. The density of a matrix is the

ratio of the number of 1s in the matrix to the total number of entries in the matrix. A

low-density parity-check code is a code whose parity check matrix has a low density.

A randomly chosen low-density parity-check matrix would have very few 1s in each

row and therefore, each parity-check equation involves only a few code bits. In other

words, LDPC codes are characterized by sparse parity-check matrices [25]. A (j, k)-

regular LDPC matrix is one which has exactly k ones in each row, and exactly j < k

ones in each column.

H
1 0 0 1 1

0 1 0 1 1

0 0 1 0 1

=

Bit nodes Check nodes

Figure 17: Tanner graph representation of a parity check matrix.

An alternative representation of a parity-check matrix is through bipartite graphs,

also called Tanner graphs. A bipartite graph has two kinds of nodes: bit nodes, corre-

sponding to the code bits; and check nodes, corresponding to parity-check equations,

i.e., the rows of H . A bit node and a check node are connected with an edge if the

code bit corresponding to the bit node participates in the parity-check equation cor-

responding to the check node. A sample parity-check matrix and its representation

using a bipartite graph is shown in Figure 17.

37

The standard method of decoding block codes is through syndrome decoding [67].

The syndrome vector is defined to be s = HrT , where r is the received vector. The

syndrome for a codeword evaluates to zero. The syndrome is chosen as an look-up

index in a table of possible error vectors. The error vector corresponding to a syn-

drome is the most likely error vector that causes that syndrome, and is added to the

received vector to get the receiver’s decision. For practical code lengths, syndrome

decoding is impractical due to the large number of possible error vectors. An attrac-

tive feature of LDPC codes is the existence of a much simpler decoding algorithm

based on message-passing, which, assuming that the bipartite graph corresponding

to the LDPC code is cycle-free, is optimal [25]. Even in the other cases where its

optimality has not been proved, the message passing decoder performs remarkably

well.

The message passing decoder works by passing messages between the bit nodes

and the check nodes, improving the quality of its decisions at each iteration. This

is similar to the decoding of turbo codes in that smaller entities within the decoder

cooperate to decode the overall code. In fact, it has been shown that both turbo codes

and LDPC codes are special cases of codes on generalized graphs with generalized

trellis decoding algorithms [66].

2.3.2.1 Message Passing Decoder

In this section, we present a summary of the message passing algorithm [25] [5]. To

simplify the notation, we present the message passing decoder assuming that we have

a (j, k)-regular LDPC code. In the next section, we discuss design and decoding of

irregular LDPC codes.

Let a = [a0, a1, · · · aK−1] be the message transmitted, where ai ∈ A and A is the

transmitter alphabet. The vector a is encoded to the codeword c = [c0, c1, · · · cN−1].

Let r = [r0, r1, . . . rN−1] be the received vector. We again consider the MAP receiver

38

that picks a to maximize the a posteriori probability Pr[ak = a|r] for each k, where

a ∈ A. For simplicity of notation, we assume that the alphabet A is binary with

A = {0, 1}. Therefore, the MAP receiver computes the a posteriori LLR λk given by

λk = log
Pr[ak = 1|r]

Pr[ak = 0|r]
, (27)

for each k and makes the decision âk = 1 if λk > 0, and âk = 0 if λk <= 0. Applying

Bayes’ rule and simplifying, we can express λk as

λk = log
f(rk|ak = 1)

f(rk|ak = 0)
+ log

Pr[ak = 1|ri6=k]
Pr[ak = 0|ri6=k]

, (28)

where f(rk|ak = 1) is the p.d.f of the observation rk given that ak = 1. Similarly

for f(rk|ak = 0). The variable ri6=k is the vector that has all the observations ri

from i = 0 to i = N − 1 except for i = k. The first term in the summation on the

right hand side represents the intrinsic information λintk coming directly from the kth

channel observation, and the second term is the extrinsic information λextk for the kth

bit, coming from all the other channel observations. Message passing algorithm is a

simple and effective way of computing extrinsic information.

Each of the bit nodes and the check nodes acts as a computation device that acts

on the information received along the edges connected to it, and puts out information

back onto these edges. Let the LLR values at the ith iteration be denoted by {λik}. As

iterations progress, assuming a cycle-free graph, λik converges to the true a posteriori

LLR defined in (28). We initialize the LLR variables to the intrinsic values. Therefore,

λ0
k = λintk = log

f(rk|ak = 1)

f(rk|ak = 0)
. (29)

Denote the set of indices of check nodes connected to bit node i by M(i) and the set of

indices of bit nodes connected to check node i by N(i). Since we have a (j, k)-regular

LDPC code, the cardinality of M(i) is j for all i, and the cardinality of N(i) is k for

all i. Let the message from bit node i to the check node corresponding to the nth

39

element in M(i) be denoted by mb→c
in , and let the message from check node i to the

bit node corresponding to the nth element in N(i) be mc→b
in .

First, consider the bit-nodes. Let l be the nth element of M(i). Therefore, check

node l is the nth check node connected to the ith bit node. Let Mc→b
il be the set of

messages mc→b
in for all n ∈ M(i)\{l}, where M(i)\{l} denotes the set that contains

all elements of M(i) except for element l. The message from the ith bit node to the

lth check node is

mb→c
in = log

Pr[ai = 1|Mc→b
il , λinti]

Pr[ai = 0|Mc→b
il , λinti]

. (30)

Therefore, the message mb→c
in is the LLR computed at the ith bit node taking into

account inputs along all the edges except for the nth one. Assuming a cycle-free graph,

we get

mb→c
in = λinti +

∑
p∈M(i)\{l}

mc→b
pq , (31)

where the index q is such that the the qth element in N(p) is i. Therefore, the message

from the ith bit node to the nth check node connected to it is simply the sum of the

intrinsic information and all the incoming check-to-bit messages except from the check

node in question. The check-to-bit messages are all initialized to 0. Therefore, the

bit-to-check messages for the first iteration are

mb→c
in = λinti , (32)

for all i and n ∈M(i).

The LLR for the ith bit on the kth iteration is given by

λki = λinti +
∑

p∈M(i)

mc→b
pq , (33)

where the index q is such that the the qth element in N(p) is i. In other words,

the LLR value is simply the sum of the intrinsic information and all the incoming

messages.

40

Bit nodes Check nodes

f(⋅)

f(⋅)

f(⋅)

Channel LLR

Sum
Product

Figure 18: The bit and check updates in message passing decoding.

Next, the check node computations. Let l be the nth element of N(i). Therefore,

bit node l is the nth bit node connected to the ith check node. Let Mb→c
il be the set

of messages mb→c
in for all n ∈ N(i)\{l}. The message from the ith check node to the

lth bit node is

mc→b
in = log

Pr[al = 1|Mb→c
il]

Pr[al = 0|Mb→c
il]

. (34)

The check node computation is not as simple as a summation, which was the case

with the bit nodes. For the check nodes, we get

mc→b
in = −2 tanh−1

 ∏
p∈N(i)\{l}

tanh

(
−mb→c

pq

2

) , (35)

where the index q is such that the qth element in M(p) is i. Even at the check node,

for any outgoing message, the operation is on all the incoming messages except on the

edge of interest. But, instead of a summation, we have the tanh−1 of a product of tanh

of the relevant incoming messages. The bit node and the check node operations are

summarized in Figure 18, where the function f(x) is defined by f(x) = tanh
(
−x

2

)
.

The check-to-bit messages contain extrinsic information. Consider the ith bit node

at the first iteration. The incoming check-to-bit messages are from check nodes with

indices in M(i). Each of these is connected to k − 1 bits other than the ith bit node.

Therefore, each of the incoming check-to-bit messages incident on the ith bit has

information about ai based on some k − 1 observations in the set rl 6=i. Under the

41

assumption of a cycle-free graph, we can say that, after the first iteration, we have

information about ai based on j(k−1) out of the N−1 elements of rl 6=i. By a similar

argument, we can show that at the end of the second iteration, we have information

about ai based on j(j−1)(k−1)2 elements of rl 6=i. As iterations progress, eventually,

the sum of check-to-bit messages at the ith bit node has information about ai based

on all the elements of rl 6=i. This is nothing but the extrinsic information of (28).

When the graph has cycles, the message passing decoder no longer gives the exact

MAP decoder, but is approximate. However, in practice, the performance of the

message passing decoder is good even in presence of cycles.

2.3.2.2 Irregular LDPC Codes

Regular LDPC codes show good performance with the message passing decoder at

reasonably low complexity, but to approach capacity, we need to use irregular codes

[55]. As the name suggests, irregular LDPC codes are not regular. Not all the bit

nodes have the same degree (number of edges connected to it) and not all the check

nodes have the same degree. Irregular LDPC codes are specified using degree distri-

bution polynomials, which are convenient ways of representing the fraction of nodes

that are connected to a certain number of edges. The bit node degree distribution

polynomial is ρ(x) =
∑
i ρix

i, where ρi is the fraction of bit nodes that have degree

i. The check node degree distribution polynomial is λ(x) =
∑
i λix

i, where λi is the

fraction of check nodes that have degree i. Irregular LDPC codes allow an additional

degree of freedom when compared to regular ones, and this has been exploited to

design codes that perform very close to the Shannon capacity [13].

The performance of LDPC codes can be predicted as a function of the bit node and

the check node degree distributions using density evolution [14]. Density evolution

tracks the probability density of the messages that are passed between the bit nodes

and the check nodes. For high enough SNRs, the mean of the densities goes to

42

infinity as iterations progress, meaning that the decoder is sure of its decisions. For

low enough SNRs, the mean converges to a finite value and this represents the case

where the decoder fails to decode. The SNR that divides these two regimes represents

the threshold for the performance of the code. Irregular LDPC codes are designed to

get the threshold as close to the Shannon capacity as possible.

The decoding of irregular LDPC codes is using message passing as described in the

previous section, except that in each of the evaluations, the number of participating

messages is not fixed, but rather depends on the degree of the node in question.

2.3.3 Turbo Equalization

Equalization is used to combat the distortion introduced by the channel. Convention-

ally, linear equalizers and decision feedback equalizers have been used for this purpose.

An alternate method is to view the channel as a rate-1 convolutional encoder that

can be decoded on the trellis. This approach is feasible if the channel has few taps

as this means we have a manageable number of states in the trellis. When this is not

the case, we traditionally split the process of equalization into two stages: the first

stage equalizes to a partial response target with few taps that is spectrally similar to

the channel response; and in the second stage we decode using the trellis based on

the target impulse response. The first stage minimizes noise enhancement and at the

same time limits the number of taps for the next stage, and in stage two, we perform

the maximum-likelihood or maximum a posteriori decoding. This is the basis of the

partial response maximum likelihood (PRML) technique used in magnetic recording

[15]. A widely-used target for the magnetic recording channel is the PR-IV channel,

also characterized by the polynomial 1−D2. The output of the PR-IV channel is got

by subtracting the delayed-by-two version of the input from the input itself.

The turbo idea, where the constituent components of the decoded exchange in-

formation, has been extended to include equalization as well, and this is called turbo

43

EQUALIZER

a priori

OUTER
DECODER

a priori

π

π−1 +

+

r

λ1e

λ2e

–

–

λ2

0

Figure 19: A turbo equalizer.

equalization [54]. The system now is viewed as a serial concatenated turbo code with

the channel being the inner code and the ECC being the outer code. The decoder

structure is exactly the same as that of a serial turbo code, except that the inner

decoder is now replaced by the equalizer, as shown in Figure 19. An advantage with

this scheme is that the ECC now need not be a turbo code to get good performance.

A convolutional code used as the ECC gives surprisingly good performance with the

1/1⊕D2-precoded PR-IV channel, and this can be attributed to the precoded PR-IV

channel being a good inner code for the serial turbo configuration. This is the con-

figuration that will be studied in subsequent chapters. In addition, we also consider

LDPC codes as the outer codes.

2.4 Iterative Synchronization

In this section, we summarize previous work related to iterative timing recovery.

Iterative algorithms have been proposed in the past for phase synchronization, carrier

synchronization and timing recovery for different channel models.

Perhaps the first such instance was the work of Georghiades and Snyder [26],

where the expectation-maximization (EM) algorithm was used to perform sequence

detection in the presence of a fixed timing offset and a simple channel model where

the ISI for any symbol was only due to its immediate neighbors. In this case, the EM

algorithm converged fast and gave good results.

44

2.4.1 AWGN Channel and Constant Offset

The most popular application of iterative techniques for synchronization appears to

be in the area of carrier phase recovery. The most common system model employed is

the one involving an AWGN channel and a carrier phase offset that remains constant

for the duration of the packet. Either QAM or PSK constellations are used for the

signal modulation. The ECC for the system is either a turbo code or an LDPC code.

For this channel model, the timing estimator used is either the maximum-likelihood

(ML) or the maximum a posteriori one. The timing estimator is used in conjunction

with the decoding iterations of the ECC, with soft information from the ECC decoder

being used in the timing estimator, and better samples due to the timing estimator

being used in the ECC decoder.

Specific instances of the general framework described above are as follows. In

[50], it is shown that the ML timing estimator can be implemented using the EM

algorithm. The EM iterations are interpreted as the iterations of the turbo decoder

with the timing estimator. The system considered here is an AWGN system with a

PSK constellation. In [40], the system model considered is a rate-1/3 turbo-coded

system on an AWGN channel with a QPSK constellation with phase offset and a

timing offset, both of which are constant for the duration of the packet. The effect of

timing errors on the BCJR algorithm is quantified, and this analysis is used to propose

a new receiver architecture. In the turbo iterations, the proposed receiver replaces

the BCJR block by a new MAP block which runs two BCJR blocks for two possible

timing offsets, chosen according to available a priori information. In [41], a slightly

different approach is taken to tackle the phase offset. The trellis of the turbo code

is frequently terminated using regular pilot bits and tail bits. This adds redundancy,

but improves the performance of the timing estimator and the receiver in general.

In [70] and [71], for a BPSK system on an AWGN channel, an explicit maximum

a posteriori phase estimator is derived and this is used as the timing estimator in

45

iterations with the turbo decoder.

Similar results and algorithms for QAM constellations are obtained in [34] and

[35], where a constant phase offset is tracked on an AWGN channel. The timing

estimators in these cases are based on the ML and a pseudo-ML criteria respectively.

As before, the timing estimator uses soft information from the turbo iterations.

As opposed to using turbo codes as the ECC, the following contributions use an

LDPC code as the outer code. In [62], the system model is the same as the one

used in [35], except that the ECC is now an LDPC code. The receiver architecture

consists of an ML timing estimator that iterates with an LDPC decoder. In [51], for an

LDPC-coded system with BPSK symbols on an AWGN channel with a constant phase

offset, an iterative receiver is proposed that works on the augmented factor graph that

includes nodes for estimating the constant phase offset. The additional timing nodes

implement a low-complexity heuristic algorithm that uses hard-quantized versions of

the soft information as training symbols for phase estimation. The performance of

this algorithm is analyzed using density evolution.

All the methods described above essentially feedback soft decisions from the ECC

decoder to the synchronization block to improve its performance. A different approach

to account for the presence of ECC in the system is described in [60]. Depending on

the receiver’s estimate (p̂) of the probability of error (p), a non-linearity is used

to modify the timing error signal in the PLL. The performance of the overall loop

improves as a result of this modification. One way to arrive at the values of p̂ is to use

extrinsic information charts. For each iteration, a suitable p̂ is used. The algorithm

presented is also shown to be robust to mismatches between p and p̂.

46

2.4.2 AWGN Channel and Time-varying Offset

So far, all the results mentioned have been for tracking a constant phase offset with

AWGN channels. A more general system model would have time-varying synchro-

nization parameters. In [42], a rate-1/3 turbo-coded, BPSK-encoded system is used

on an AWGN channel with severe phase noise modeled by a Markov chain. To sim-

plify the system implementation, the possible phase offsets are quantized to a certain

number of levels. The BCJR algorithm is then modified to increase the state-space

to include the effects of the phase offsets, leading to good performance even in the

face of severe phase noise. An alternative approach is based on per-survivor process-

ing (PSP), where the phase estimation and data detection are jointly performed by

having multiple phase estimators running in parallel, one for each state of the trellis.

This is explored for the AWGN channel with severe phase noise for a very low-rate

turbo-coded system in [27]. Phase estimation for an M-PSK system faced with a

random walk phase offset is considered in [11]. Here too, the solution proposed is an

EM-based estimator that uses per-survivor processing.

For higher constellations like QPSK and 8-PSK, the modified BCJR algorithm

of [42] becomes rather complex. As an alternative, in [22], a random walk phase

offset is tracked using a first-order PLL in a per-survivor processing (PSP) fashion,

with multiple PLLs running for the different states of the SISO decoders of the turbo

decoder. In [52], stochastic gradient descent type algorithms are used to track a

frequency offset. These take the form of first and second order update equations.

Phase estimation and derotation are performed between successive turbo decoder

iterations.

A common method for generating soft decisions for a turbo-coded system is using

the BCJR algorithm. To reduce complexity, in [43], a new method to generate soft

decisions has been proposed. This method relies on partitioning the appropriate

parameter space, and leads to a fast suboptimal algorithm for phase estimation for

47

turbo-coded, QAM-encoded systems on an AWGN channel. This method is general

and is applicable to both constant phase offset and random walk phase offset.

As with the constant phase offset case, LDPC codes have been used as the outer

code with time-varying phase offset models. In [33], phase estimation is performed for

an LDPC-coded BPSK system with no ISI using a generalized Forney factor graph

that has additional nodes to account for the phase offset. These additional nodes

implement gradient methods or Kalman filtering using quantized messages.

2.4.3 ISI Channel and Time-varying Offset

The next level of generalization that we consider is the inclusion of an ISI channel. All

the work mentioned so far has been for single-user AWGN channels. In [18], the chan-

nel model considered is multi-user AWGN. For this setting, chip-level synchronization

is achieved using an iterative synchronization algorithm that implements local grid

search. Calabro-Wolf perfect arrays are used to aid the synchronization process on a

channel dedicated to synchronization.

In [65], the problem of timing recovery is considered for ISI-channels that em-

ploy turbo codes. The timing offset considered here is constant for the duration

of the packet, and the EM algorithm is used. Simulation results with square-root

raised-cosine pulse shape show that the proposed estimator performs close to one

that achieves the Cramér-Rao bound.

Timing recovery for ISI channels, specifically partial response (PR) channels, that

suffer from time-varying offsets is considered in [69]. A novel MAP detector is pre-

sented that includes the effects of ISI and the quantized timing offsets. As opposed to

the case with AWGN channels where the synchronization and decoding was performed

jointly, with ISI channels, there is the added requirement of equalization. Ideally,

the three tasks of synchronization, equalization and decoding need to be performed

jointly. However, this is prohibitively complex. In [69] and [4], synchronization and

48

equalization are jointly performed using the proposed MAP detector and this iterated

with the ECC decoder. An alternate approach is presented in [31], where the PSP-

based BCJR method is used to jointly perform synchronization and equalization. In

this paper, multiple PLLs are employed to generate different samples for each of the

states of the BCJR while tracking pseudo-survivor sequences. As before, soft infor-

mation from the ECC decoder is used in the synchronization-equalization block. Two

versions, symbol-rate and oversampled, are presented, with the oversampled version

outperforming the symbol-rate one.

The use of cycle-slip detector is discussed in [30]. The channel considered in a

partial response channel. The cycle-slip detector is based on soft information from the

ECC decoder, and for a slowly-varying sinusoidal timing offset, the cycle-slip detector

is shown to appreciably reduce the number of iterations needed.

Another type of channel considered is the fading channel common in wireless

environments. In [72], a continuous phase modulation (CPM) system is considered

in a flat-fading channel with AWGN and a time-varying phase offset. The MAP

estimation algorithm proposed takes the form of a forward-backward algorithm with

multiple PLLs used based on the PSP principle. For a time-varying channel, it is

shown that it is beneficial to run an approximate forward-only algorithm. In [68],

a multi-user DS-CDMA setting with a single-parameter timing offset is considered

in a fading environment. Pilot symbols are used during the synchronization phase,

thus obviating the need for iterations with the ECC decoder. Synchronization and

channel estimation are performed jointly, with the timing estimates being arrived at

by gradient search based on the channel estimates and the pilot symbols.

Finally, our work on iterative timing recovery fits in with the work presented in

this subsection, namely timing recovery for ISI channels that suffer from time-varying

timing offsets. We consider systems that have baud-rate sampling. We approximate

the optimal process of joint synchronization, equalization and decoding by iterating

49

between the synchronization, equalization and decoding blocks. We use the simple

PLL-based timing recovery block, and the process of iteration gets us close to the

performance of a system with perfect synchronization. We also use slope-based cycle-

slip detectors to speed up convergence.

2.5 Summary

We presented a brief overview of the magnetic recording channel. In this work, we

are concerned with timing recovery for ISI-limited channels that allow baud-spaced

sampling, and we use the magnetic recording channel as an example. To ensure

low error rates in a typical magnetic recording system, we need to undo non-idealities

introduced by the channel, and to this effect we perform timing recovery, equalization,

precoding, RLL encoding and decoding, and ECC encoding and decoding.

Next, we set up the timing recovery problem and described the conventional timing

recovery method for the magnetic recording channel. This is based on a PLL which

uses timing error estimates from a TED to update its timing estimates. We also

proposed the soft TED that uses soft decisions instead of hard decisions. The proposed

soft TED has lesser measurement error variance than the hard TED. Finally, we

presented a broad overview of previous and current work on iterative synchronization.

While designing timing recovery algorithms, the system is assumed to be uncoded,

which leads to the assumption of i.i.d. data symbols. Instantaneous decisions about

the transmitted symbols are used in the decision-directed TED, assuming that these

decisions are correct. These assumptions are valid for systems operating at high

SNR. The advent of capacity-approaching codes allows operations at low SNR where

the instantaneous decisions are not reliable enough. The assumption of independent

data symbols, however, is still approximately valid with capacity-approaching codes.

Therefore, while deriving the Cramér-Rao for the timing recovery problem in Chap-

ter 3, we assume that the data symbols are independent and identically distributed.

50

CHAPTER 3

CRAMÉR-RAO BOUND

In Chapter 2, we presented a synopsis of the magnetic recording system under con-

sideration and also of conventional timing recovery. In this chapter, we consider

the timing recovery problem for a more general ISI-limited system that allows baud

rate sampling. Using the Cramér-Rao bound (CRB) [63] as a basis, we develop

lower bounds on the timing estimation error variance of any unbiased estimator. For

tractability we assume an uncoded system with i.i.d. data symbols, which is approx-

imately true for the capacity-approaching iteratively-decodable codes considered in

our study.

The bounds developed in this chapter are used in Chapter 4 to evaluate the per-

formance of the conventional PLL-based timing recovery methods. In Chapter 5, we

develop block-processing timing recovery methods that outperform the conventional

ones. In addition to serving as a benchmark to evaluate the different timing recovery

schemes of Chapters 4 and 5, the CRB evaluation allows an analytical approximation

to the MAP estimator of Chapter 5 and also leads to a much improved acquisition

strategy in Chapter 6.

The structure of the rest of the chapter is as follows. In Section 3.1, we define

the Cramér-Rao bound (CRB) and arrive at the form of the CRB that is used in our

derivations. Next, we present the system model under consideration in Section 3.2.

We then derive the CRB for this system for different timing models in Section 3.3

and finally, we present the summary of the results and observations in Section 3.4.

51

3.1 Definition

Parameter estimation problems can be modeled as consisting of the following four

components: [63]

• Parameter Space. The parameter θ is a P × 1 vector consisting of P scalar

parameters. The parameter space is the set of all possible values the parameter

may take on.

• Observation Space. This is the set of all possible observations r. In general, r

is a vector of dimensions Nr × 1.

• Probabilistic Mapping from Parameter Space to Observation Space. This is

the conditional probability density fr|θ(r|θ) that determines the effect of the

parameter θ on the observation r.

• Estimation Rule. This is the mapping rule θ̂(r) that we use to map the obser-

vation r into an estimate θ̂ which is again a P × 1 vector.

In the absence of a priori information about the parameter θ, we treat it as a

deterministic but unknown quantity. When we have an a priori distribution fθ(θ),

we treat θ as a random variable.

f 1 r θ1() f 2 r θ1()f 1 r θ2() f 2 r θ2()

r r

Figure 20: CRB depends on the narrowness of the conditional probability density.

Example: Before the precise definition of the CRB, we first present

the following intuition about the CRB. Let θ be the parameter to be

52

estimated. In Figure 20, we consider two example density functions

f1(r|θ) = N (θ, σ2
1) and f2(r|θ) = N (θ, σ2

2), where σ2
1 < σ2

2. Let θ1 be

the actual realization of θ, and let θ2 be the estimate. For any particular

realization of the observation r, we see that the change in f1(r|θ) going

from θ = θ1 to θ = θ2 is greater than the change in f2(r|θ) going from

θ = θ1 to θ = θ2. In other words, with f1(r|θ), the likelihood of obser-

vations leading away from θ is less that those with f2(r|θ), and hence

we can expect lesser error variance for estimates of the parameter θ with

f1(r|θ) than with f2(r|θ). Therefore, the sensitivity of f(r|θ) to changes

in θ determines the quality of the estimate. The narrower the conditional

probability density, the better the estimate. In the absence of a priori in-

formation, the CRB uses ∂
∂θ

ln f(r|θ) as the measure of narrowness. With

a priori information, the measure of narrowness is ∂
∂θ

ln f(r, θ).

First, consider the case without a priori information. We are interested in the

estimation error covariance matrix Er[(θ̂(r)− θ)(θ̂(r)− θ)T]. An estimator θ̂(r) is

called unbiased if, for all θ, the average bias B(θ) is zero, where

B(θ) = E[θ̂(r)− θ]
4
=
∫ ∞
−∞

fr|θ(r|θ)[θ̂(r)− θ] dr. (36)

For any unbiased estimator, the CRB is given by [63]

Er[(θ̂(r)− θ)(θ̂(r)− θ)T] ≥ J−1
θ , (37)

where J θ is a P × P square matrix called the Fisher information matrix, defined by

J θ = Er

[
∂

∂θ
ln fr|θ(r|θ)

] [
∂

∂θ
ln fr|θ(r|θ)

]T . (38)

The matrix inequality Er[(θ̂(r) − θ)(θ̂(r) − θ)T] ≥ J−1
θ is in the sense that the

matrix difference
(
Er[(θ̂(r)− θ)(θ̂(r)− θ)T]− J−1

θ

)
is positive semi-definite. This

implies that the estimation error variance for the ith parameter θi is bounded by the

53

ith diagonal entry of J−1
θ . In symbols,

Er[(θ̂i(r)− θi)2] ≥ J−1
θ (i, i), (39)

where θ̂i(r) and θi denote the ith element of θ̂(r) and θ respectively.

In the presence of an a priori distribution fθ(θ), we consider the average error

covariance matrix Er,θ[(θ̂(r) − θ)(θ̂(r) − θ)T]. As opposed to unbiased estimators,

we consider probabilistically unbiased estimators where the conditional expectation of

the error, B(θ), satisfies the following conditions:

lim
θ→∞

B(θ)fθ(θ) = 0,

lim
θ→−∞

B(θ)fθ(θ) = 0. (40)

The limits in the above equations are in the sense that each individual component

tends to ∞ or −∞ respectively as the case may be. An unbiased estimator is proba-

bilistically unbiased and, therefore, the result below holds for a more general class of

estimators. For probabilistically unbiased estimators, the lower bound is given by [63]

Er,θ[(θ̂(r)− θ)(θ̂(r)− θ)T] ≥ J−1
T , (41)

where JT is the total information matrix of dimensions P × P , defined by

JT = Er,θ

[
∂

∂θ
ln fr,θ(r,θ)

] [
∂

∂θ
ln fr,θ(r,θ)

]T , (42)

where fr,θ(r,θ) is the joint probability density of r and θ. As before, the matrix

inequality is in the sense that the difference is positive semi-definite. Note that JT

can be rewritten as

JT = Eθ[J θ] + Ja, (43)

where the a priori information matrix Ja is

Ja = Er,θ

[
∂

∂θ
ln fθ(θ)

] [
∂

∂θ
ln fθ(θ)

]T . (44)

54

The Fisher information matrix J θ has an elegant form when the density fr|θ(r|θ)

is multivariate normal [59]. Specifically, if the distribution of r is N (x(θ),R), i.e.,

fr|θ(r|θ) =
1√

(2π)N |R|
exp

(
−1

2
[r − x(θ)]T R−1 [r − x(θ)]

)
, (45)

then J θ can be simplified to

J θ = GTR−1G, (46)

where G is the sensitivity matrix

G =

[
∂

∂θ
xT (θ)

]
= [g0 g1 . . . gP−1], (47)

P is the size of the vector θ and the N × 1 column vector gi = ∂x(θ)
∂θi

denotes

the variation in the mean x(θ) with respect to θi, the ith element of θ. When the

covariance matrix is of the form R = σ2I, this further simplifies to

J θ =
1

σ2
GTG. (48)

This is the form that shall be used in the sequel.

3.2 System Model

uncoded i.i.d.
� h(t)

n(t)

y(t)
fakg

N�1

0

Figure 21: System block diagram with timing offsets, channel distortion and additive
noise.

Consider the pulse amplitude modulated (PAM) system shown in Figure 21. The

channel output waveform y(t) is given by

y(t) =
N−1∑
l=0

alh(t− lT − τl) + n(t), (49)

55

where T is the bit period, al ∈ {±1} are the N i.i.d. data symbols, h(t) is the channel

impulse response, n(t) is additive white Gaussian noise, and τl is the unknown timing

offset for the lth symbol.

We assume that the channel response h(t) is band-limited to the frequency range

[− 1
2T
, 1

2T
) with the result that baud-rate samples taken at a sampling rate of 1/T

provide sufficient statistics. To eliminate out-of-band noise at the receiver, we filter

the received waveform y(t) by a low-pass filter with impulse response 1
T

sin(πt/T)
πt/T

. Next,

we sample the resulting waveform r(t) at instants kT to arrive at baud-rate samples

{rk} given by

rk =
N−1∑
l=0

alh(kT − lT − τl) + nk, (50)

where nk are zero-mean i.i.d. normal random variables with variance σ2. We de-

fine the signal-to-noise ratio (SNR) to be SNR = Eh
2σ2 where Eh =

∫∞
−∞ |h(t)|2 dt is the

energy in the channel impulse response h(t). We assume that we collect N+2M sam-

ples and stack them in a observation vector r = [r−M r−M+1 . . . rN+M−1]T , where

we eventually let M →∞.

The receiver has to estimate the symbols {ak} and the timing offsets {τk} in the

general case. In the trained case, where the transmitted symbols {ak} are known at

the receiver, the problem is simpler and the receiver only needs to estimate {τk}. The

general timing recovery problem can be phrased as one where we need to estimate

{ak} and {τk} given {rk} and knowledge of the channel response h(t).

3.3 Evaluation of the CRB

In this section, we evaluate the CRB for four timing offset models of interest, assuming

that the transmitted symbols are not known at the receiver:

• Constant timing offset, i.e., τk = τ0 ∀ k.

• Frequency offset, i.e., τk = τ0 + k∆T .

56

• Random walk, i.e., τk = τk−1 + wk where {wk} are i.i.d. zero-mean normal

random variables with variance σ2
w.

• A combination of the three, i.e., τk = τk−1 + ∆T + wk and τ0 not necessarily

zero.

Before we evaluate the CRB for these models, we make the following simplifying

observation. Consider the system model of (50). The parameter θ consists of two

sets of parameters, the data parameters {ak} and the timing parameters {τk}.

θ = [a0 a1 . . . aN−1 | τ0 τ1 . . . τN−1]T ,

= [θTd | θTt]T , (51)

where we have defined the data parameter vector θd and the timing parameter vector

θt. We assume that the noise nk is i.i.d. normal and, therefore, the Fisher information

matrix has the structure described in (48), where the mean x(θ) of (45) is given by

[x(θ)]k =
N−1∑
l=0

alh(kT − lT − τl). (52)

The matrixG can also be partitioned into data and timing portions, i.e.,G = [Gd Gt]

and J θ has a block structure given by

J θ =
1

σ2

 G
T
dGd GT

dGt

GT
t Gd GT

t Gt

 . (53)

In the computation of the total information matrix, we need to take the expectation

of J θ with respect to θ (43). For the case where we know only the a priori distribution

of the data symbols and not that of the timing parameters, we can still compute the

total information matrix by making the timing component of Ja zero and assuming

a uniform distribution on the timing parameters when we take the expectation of J θ

with respect to θ. This is valid because not having an a priori distribution on the

timing parameters is equivalent to having a uniform distribution and using this in (44)

57

leads to the timing components of Ja being zero. The total information matrix in this

case is essentially the Fisher information averaged over all possible data sequences.

For our model, the data symbols are uniformly chosen from {±1} and this gives the

a priori data distribution. Therefore, whether or not we have an a priori distribution

on the timing parameters, we need to take the expectation of J θ with respect to θd

to arrive at the Cramér-Rao lower bound on the average estimation error variance of

any unbiased timing estimator. Hence, we analyze E[J θ]. Specifically, we study the

behavior of the off-diagonal terms E[GT
dGt] and E[GT

t Gd] of (53).

First, we construct the matrix G, which is an (N + 2M) × P matrix. The data

portion Gd has components:

[Gd]ki =
∂xk
∂ai

= h(kT − iT − τi), (54)

whereas the timing portion Gt has components:

[Gt]ki =
∂xk
∂τi

=
N−1∑
l=0

al
∂

∂τi
h(kT − lT − τl)

= −
∑
l∈Mki

alh
′(kT − lT − τl), (55)

where h′(t) is the derivative of the pulse shape h(t) and the index set Mki depends

on the actual timing model.

Combining (54) and (55), the terms of E[GT
dGt] have the following general struc-

ture:

[GT
dGt]ij =

N+M−1∑
k=−M

[Gd]ik[Gt]jk,

= −
N+M−1∑
k=−M

 ∑
m∈Mkj

amh
′(kT −mT − τm)

h(kT − iT − τi). (56)

E[GT
t Gd] has a similar structure. Since the data symbols {ak} are zero-mean, taking

expectation with respect to θd, we get

E[GT
dGt] = 0

58

E[GT
t Gd] = 0. (57)

Therefore, in the block-diagonal matrix E[J θ], the off-diagonal entries are zero. The

inverse of this has a block diagonal structure with the diagonal entries being the

inverses of the corresponding block diagonal entries of the original matrix, i.e.,

E[J θ] =

 Jd 0

0 J t

 and

E[J θ]
−1 =

 J
−1
d 0

0 J−1
t

 . (58)

If we are concerned only with the CRB on the timing parameters, then we only need to

compute the block-diagonal entry of E[J θ] corresponding to the timing parameters

and invert it. This is what we do in the following subsections for different timing

models.

3.3.1 Constant Offset

We begin by calculating the CRB for constant offset, also done in [39]. With a

constant offset, the uniform samples {rk} are given by

rk =
N−1∑
l=0

alh(kT − lT − τ) + nk, (59)

where τ is assumed to be a deterministic but unknown timing offset. In this case, Gt

is a (N + 2M)× 1 vector and is given by

[Gt]k =
∂xk
∂τ

= −
N−1∑
l=0

alh
′(kT − lT − τ). (60)

Therefore, J t is a scalar given by

Jt =
1

σ2

N+M−1∑
k=−M

N−1∑
l=0

N−1∑
m=0

alamh
′(kT − lT − τ)h′(kT −mT − τ). (61)

Since the data symbols {ak} are i.i.d. and equally likely to be {±1}, we get

E[Jt] =
1

σ2

N−1∑
l=0

N+M−1∑
k=−M

h′
2
(kT − lT − τ)

 . (62)

59

Letting M → ∞, we see that, because the sampling rate avoids aliasing, the dis-

crete time energy equals the continuous time energy and, therefore, the bracketed

summation is the energy in the derivative of the pulse shape h(t). Denoting this by

Eh′ ,

E[Jt] =
NEh′

σ2
, (63)

and finally, we invert this to get the CRB which is [39]

σ2
ε ≥

σ2

NEh′
, (64)

where σ2
ε is the variance of the timing error ε = τ − τ̂ , where τ̂ is an estimate of the

timing offset τ . The CRB is inversely proportional to the number of samples N and

directly proportional to the channel noise variance σ2. The ratio σ2/N can be viewed

as the variance of the averaged noise, and the CRB is the averaged noise variance

scaled down by the energy in the derivative of the channel response.

Example: Consider the system where the pulse shape is a 0% excess

bandwidth pulse, i.e.,

h(t) =
sin(π t

T
)

π t
T

. (65)

To evaluate the CRB, we need the energy in h′(t), the first derivative of

h(t), which is given by

h′(t) =
cos

(
π t
T

)
− sinc

(
t
T

)
t

. (66)

Using Fourier transform and Parseval’s theorem, the energy in h′(t) is

Eh′ =
π2

3T 2
. (67)

Using this in the CRB expression of (64), we get

σ2
ε

T 2
≥ 3σ2

π2N
. (68)

60

Similarly, for the PR-IV pulse given by

h(t) = sinc
(
t

T

)
− sinc

(
t− 2T

T

)
, (69)

the CRB evaluates to

σ2
ε

T 2
≥ σ2(

2π2

3
− 1

)
N
. (70)

Next, assume that we have a priori information that τ ∼ N (0, σ2
τ). This addi-

tional information can be used to reduce the estimation error variance. The a priori

distribution of the parameter τ is

fτ (τ) =
1√

2πστ
exp

{
− τ 2

2σ2
τ

}
. (71)

Therefore, the a priori information Ja is

Ja = E

(∂

∂τ
ln fτ (τ)

)2
 =

1

σ2
τ

. (72)

The total information is got by adding the average Fisher information of (63) and the

a priori information of (72).

JT =
NEh′

σ2
+

1

σ2
τ

. (73)

Finally, we get the CRB by inverting JT . Denote the CRB without any a priori

information by CRBold and the CRB with a priori information by CRBnew. Define

the information factor fτ as the ratio of the a priori information and the average

Fisher information. That is, fτ = CRBold/σ
2
τ . In terms of these parameters,

CRBnew = CRBold
1

1 + fτ
. (74)

As the a priori information increases, that is, as σ2
τ decreases, fτ increases and

CRBnew goes to zero. The key observation is that the ratio
CRBnew
CRBold

is a func-

tion of fτ . The form of
CRBnew
CRBold

conforms with the fact that the highest CRB is

when we have no a priori information, corresponding to fτ = 0.

61

Example: Consider the system where the pulse shape is a 0% excess

bandwidth pulse, i.e.,

h(t) =
sin(π t

T
)

π t
T

. (75)

In the previous example, the CRB without a priori information was eval-

uated to be

CRBold =
σ2(

2π2

3
− 1

)
N
. (76)

Now we consider the utility of a priori information with a numerical ex-

ample. Let the channel SNR be −3 dB, leading a channel noise variance

of σ2 = 1. Therefore CRBold in this case is

CRBold =
0.1792

N
. (77)

First consider the case with only one observation, i.e., N = 1. With a

priori information στ
T

= 0.1, we get fτ = 1.792, leading to CRBnew =

0.358CRBold. On the other hand, with στ
T

= 0.01, we get fτ = 17.92,

leading to CRBnew = 0.053CRBold. Therefore, the better the a priori

information, the lower the CRB.

As N increases, the influence of the a priori information on the CRB

reduces. To illustrate this, consider N = 100 for the system above, leading

to CRBold = 1.792 × 10−3. With στ
T

= 0.1, we get fτ = 1.792 × 10−2,

leading to CRBnew = 0.982CRBold. On the other hand, with στ
T

= 0.01,

we get fτ = 0.1792, leading to CRBnew = 0.848CRBold. The reduction

in the CRB due to better a priori information is much lower when N is

higher.

To illustrate this further, we can rewrite (74) as

1

CRBnew
=

1

CRBold
+

1

σ2
τ

. (78)

62

Therefore, CRBnew is the harmonic mean of CRBold and σ2
τ . This is

reminiscent of parallel addition of resistors, with CRBnew being the total

resistance of a parallel combination of two resistors of values CRBold

and σ2
τ respectively. It is immediately obvious that a finite σ2

τ ensures

that CRBnew < CRBold. Also, as N increases, CRBold reduces and,

therefore, the effect of adding σ2
τ in parallel reduces.

3.3.2 Frequency Offset

Next, we consider the case where we have a frequency offset. This is equivalent to

having a mismatch between the actual symbol duration T and the receiver’s estimate

T ′. Let this difference be ∆T . First we assume that we have no a priori information

about ∆T . Assuming that there is no initial timing offset, i.e., τ0 = 0, the channel

model is

rk =
N−1∑
l=0

alh(kT − lT − k∆T) + nk. (79)

Proceeding as with the constant offset case, we get

E[Jt] =
Eh′

σ2

(N − 1)N(2N − 1)

6
, (80)

leading to the following CRB:

σ2
ε ≥

6σ2

Eh′(N − 1)N(2N − 1)
. (81)

As with the constant offset case, the CRB is inversely proportional to Eh′ . As opposed

to the constant offset case where the minimum estimation error variance was propor-

tional to N−1, with a frequency offset, the minimum estimation variance is asymp-

totically proportional to N−3. With a priori information that ∆T ∼ N (0, σ2
∆T), the

new CRB is

CRBnew = CRBold
1

1 + f∆T

, (82)

where f∆T is the ratio of the a priori information and the average Fisher information,

i.e., f∆T = CRBold/σ
2
∆T . This is the same form that we had in the constant offset

63

case.

Next, we assume that we have an initial timing offset τ0 and a frequency offset

parameter ∆T . The timing offsets {τk} are given by

τk = τk−1 + ∆T = τ0 + k∆T, (83)

and the channel model is

rk =
N−1∑
l=0

alh(kT − lT − τ0 − k∆T) + nk. (84)

We now have two parameters to be estimated. Let the timing parameter be θt =

[∆T τ0]. Evaluating the average Fisher information, we get

E[J t] =
Eh′

σ2

(N−1)N(2N−1)

6
N(N−1)

2

N(N−1)
2

N

 . (85)

Inverting this, the CRB is given by

E[J t]
−1 =

σ2

Eh′

 12
(N−1)N(N+1)

−6
N(N+1)

−6
N(N+1)

2(2N−1)
N(N+1)

 . (86)

The usual parameters of interest are the estimation error variance of the frequency

offset parameter ∆T and also that of the initial offset τ0, and these are the diagonal

elements of J−1
t . Writing it out, we get

E[(∆T − ∆̂T)2] ≥ 12σ2

Eh′(N − 1)N(N + 1)

E[(τ0 − τ̂0)2] ≥ 2σ2(2N − 1)

Eh′N(N + 1)
. (87)

The error variance for ∆T goes asymptotically as N−3 whereas the error variance for

τ0 goes as N−1. It is interesting to compare the CRB of τ0 in this case, CRBτ0
i+f ,

where the subscript i+ f stands for the fact that we have an initial timing offset and

a frequency offset, with the error variance when we had a constant offset, CRBτ0
i ,

where the subscript i denotes the presence of only the initial timing offset. This ratio

ζ turns out to be

ζ =
CRBτ0

i+f

CRBτ0
i

=
2(2N − 1)

N + 1
. (88)

64

When N = 1, we have ζ = 1. ζ is a monotonically increasing function of N and as

N becomes large, this tends to ζ = 4. In other words, while estimating the initial

timing offset, we face an asymptotic penalty factor of 4 due to the presence of the

frequency offset. The penalty factor for estimating ∆T is the same as ζ, i.e.,

CRBτ0
i+f

CRBτ0
i

=
CRB∆T

i+f

CRB∆T
f

= ζ =
2(2N − 1)

N + 1
. (89)

Next we evaluate the value of a priori information regarding the parameters to

be estimated. Assume we have a priori knowledge that ∆T ∼ N (0, σ2
∆T) and τ0 ∼

N (0, σ2
τ0

). The total information matrix is given by

JT =

Eh′
σ2

(N−1)N(2N−1)
6

+ 1
σ2

∆T

Eh′
σ2

N(N−1)
2

Eh′
σ2

N(N−1)
2

Eh′
σ2 N + 1

σ2
τ0

 . (90)

Inverting JT , we get the CRB. Denote the CRB for estimating τ0 without any a priori

knowledge by CRBτ0
old. (This is what was called CRBτ0

i+f earlier.) Similarly define

CRB∆T
old. Next, define parameters f∆T = CRB∆T

old/σ
2
∆T and fτ0 = CRBτ0

old/σ
2
τ0

which

are a measure of a priori information relative to the average Fisher information. In

terms of these parameters and ζ, the new CRB (including the a priori information)

evaluates to

CRB∆T
new = CRB∆T

old
1 +

fτ0
ζ

1 + f∆T + fτ0 +
f∆T fτ0

ζ

and

CRBτ0
new = CRBτ0

old

1 + f∆T

ζ

1 + f∆T + fτ0 +
f∆T fτ0

ζ

. (91)

This structure is a little more complicated than the parallel addition seen in the

case of a constant offset. To gain insight into these expressions, consider the two

extreme cases of a priori information given by fτ0 = 0 (no a priori information) and

fτ0 =∞ (complete a priori information).

fτ0 = 0 =⇒

CRB∆T
new = CRB∆T

old
1

1 + f∆T

(92)

65

CRBτ0
new = CRBτ0

old

1 + f∆T

ζ

1 + f∆T

(93)

fτ0 =∞ =⇒

CRB∆T
new = CRB∆T

old
1

ζ + f∆T

(94)

CRBτ0
new = 0 (95)

From (92), we see that when we have no a priori information about τ0, the gain

due to a priori information about ∆T is the same as in (82) where we had only a

frequency offset, and no initial timing offset. Comparing (92) and (94) for a fixed

f∆T , CRB∆T
new|fτ0=∞ < CRB∆T

new|fτ0=0, i.e., a priori information about τ0 helps in

estimating ∆T . An alternative conclusion that can be drawn from this is that when

we have two parameters that are coupled through the same observations, it helps

to exploit this coupling rather than estimate the parameters separately. The same

conclusion can be drawn from (93) where a non-zero f∆T makes CRBτ0
new < CRBτ0

old

even when fτ0 = 0. Finally, (95) states the obvious fact that when we have complete

a priori information, the estimation error variance is lower bounded by zero.

3.3.3 Accumulation Process

Next, we look at the accumulation process where the timing offsets are as follows:

τk+1 = τk + wk =
k∑
j=0

wj, (96)

where we assume τ0 = 0 and the sequence {τk} is formed by accumulating {wk}. If we

assume that the elements of {wk} are i.i.d. zero-mean normal random variables, we

get the random walk model which we study in the next section. For the present, we

assume that we have no a priori information about the variables {wk}. The channel

model with uniform sampling is

rk =
N−1∑
l=0

alh(kT − lT − τl) + nk

=
N−1∑
l=0

alh(kT − lT −
l−1∑
j=0

wj) + nk

66

= xk + nk, (97)

where xk is again the noiseless received value. The parameter to be estimated is

τ = [τ1 τ2 . . . τN−1]T . Instead of directly computing the Fisher information matrix

J τ , we define the parameter w = [w0 w1 . . . wN−2]T , compute Jw, and then use the

linear transformation relating τ and w to get J τ .

We proceed with evaluating the matrix G for the parameter w. We have

gki =
∂xk
∂wi

=
N−1∑
l=0

al
∂

∂wi
h(kT − lT −

l−1∑
j=0

wj). (98)

The derivative of h(kT − lT −∑l−1
j=0 wj) with respect to wi is zero if wi does not occur

in the summation inside the h(·) term. Therefore,

gki = −
N−1∑
l=i+1

alh
′(kT − lT −

l−1∑
j=0

wj) = −
N−1∑
l=i+1

alh
′(kT − lT − τl). (99)

Next, we compute GTG:

[GTG]i1i2 =
N+M−1∑
k=−M

gki1gki2

=
N+M−1∑
k=−M

N−1∑
j1=i1+1

N−1∑
j2=i2+1

aj1aj2h
′(kT − j1T − τj1)h′(kT − j2T − τj2).(100)

To get the averaged Fisher information, we need to take the expectation of GTG

over all data sequences a. Since the data symbols are assumed to be uncorrelated,

we have E[aj1aj2] = δj1j2 . Using this fact, the second and third sums in (100) collapse

to a single summation, and, changing the order of summation,we get

E[GTG]i1i2 =
N−1∑

j=max(i1,i2)+1

N+M−1∑
k=−M

[h′(kT − jT − τj)]2
 , (101)

where the expectation is over a. Now ,letting M → ∞ we see that the bracketed

term is the energy in h′(t), denoted by Eh′ . Therefore,

E[Jw]i1i2 =
Eh′

σ2
((N − 1)−max(i1, i2)) . (102)

67

In long hand,

E[Jw] =
Eh′

σ2

N − 1 N − 2 N − 3 . . . 1

N − 2 N − 2 N − 3 . . . 1

N − 3 N − 3 N − 3 . . . 1

...
...

...
. . .

...

1 1 1 . . . 1

. (103)

To get J τ from Jw, we use the relationship between τ and w. Recall that τk =∑k−1
j=0 wj. In vector notation,

τ = Tw, (104)

where

T =

1 0 0 . . . 0

1 1 0 . . . 0

1 1 1
. . .

...
...

...
...

. . . 0

1 1 1 . . . 1

is a lower triangular matrix. (105)

Using this relationship between τ and w, we can write [58]

J τ = T−TJwT
−1. (106)

To compute T−1, recognize the fact that we need now the inverse mapping of τk =∑k−1
j=0 wj, which is wk = τk+1 − τk. Therefore,

T−1 =

1 0 0 . . . 0

−1 1 0 . . . 0

0 −1 1
. . .

...
...

. 0

0 . . . 0 −1 1

, (107)

which is a lower triangular Toeplitz matrix with only two non-zero diagonals, the

main diagonal and an adjacent one. Using (103), (106) and (107) we get

E[J τ] =
Eh′

σ2
IN×N . (108)

68

Inverting this to get the CRB is simple and we get

E[(τ − τ̂)(τ − τ̂)T] ≥ σ2

Eh′
IN×N . (109)

This result implies that for an accumulation process with no a priori information, the

bound on the estimation error for each component is the same and equal to σ2/Eh′ ,

which is the same as the CRB for estimating a constant offset with N = 1, i.e., the

one-shot transmission case. For the accumulation process, the CRB is independent

of N . This result makes intuitive sense since each new observation brings along with

it a new parameter to be estimated.

3.3.4 Random Walk

When we put a specific a priori distribution on the accumulation process, we get the

random walk. We consider the random walk given by

τk+1 = τk + wk = τ0 +
k∑
j=0

wj, (110)

where wk ∼ N (0, σ2
w) are i.i.d. and σ2

w determines the severity of the timing jitter.

We assume perfect acquisition, i.e., τ0 = 0.

We now need to compute the total information, which is the sum of the average

Fisher information of (108) and the a priori information. The a priori distribution

fw(w) is

fw(w) =
N−2∏
j=0

1√
2πσ2

w

exp

(
−
w2
j

2σ2
w

)
. (111)

Therefore, the a priori information matrix for w is

Jaw =
1

σ2
w

I, (112)

and the a priori information matrix for τ is [58]

Jaτ =
1

σ2
w

T−TT−1, (113)

69

where T is the linear transformation relating w and τ defined in (105). Combining

(43), (108) and (113) and simplifying, we get

JT =
1

σ2
w

λ −1 0 . . . 0

−1 λ −1
. . .

...

0
. 0

...
. . . −1 λ −1

0 . . . 0 −1 λ− 1

, where λ = 2 + Eh′

σ2
w

σ2
. (114)

We need to invert JT to get the CRB. The details of the inversion procedure are given

in Appendix B. To get the CRB on the estimation error for the individual timing

estimates τk, we need the diagonal elements of [JT]−1. The CRB for the random walk

evaluates to

E[(τ̂i(r)− τi)2]

T 2
≥ [JT]−1

ii

T 2
= h · f(i), (115)

where

h =
σ2
w

T 2

η

η2 − 1
is the steady state value,

f(i) = tanh
(

(N +
1

2
) ln η

)1−
sinh

(
(N − 2i+ 1

2
) ln η

)
sinh

(
(N + 1

2
) ln η

)
 ,

η =
λ+
√
λ2 − 4

2
and λ = 2 + Eh′

σ2
w

σ2
. (116)

Example: Consider again the PR-IV system with

h(t) = sinc
(
t

T

)
− sinc

(
t− 2T

T

)
, (117)

for which Eh′ = 1
T 2

(
2π2

3
− 1

)
.

Figure 22 plots the bound as a function of the symbol index k for SNR = 5

dB and for σw/T ∈ {0.005%, 0.05%, 0.5%, 5%}. Along with the bounds,

we have plotted a horizontal line at value h. As σw/T increases, we see

that the shaping function f(i) tends towards a constant, independent of

70

0 2500 5000
0

0.2

0.4

0.6

0.8

1
x 10

−5

σ
w

/T = 0.005%

E
rr

or
 v

ar
ia

nc
e

0 2500 5000
−5

0

5

10

15
x 10

−5

σ
w

/T = 0.05%

E
rr

or
 v

ar
ia

nc
e

0 2500 5000
0

0.2

0.4

0.6

0.8

1

x 10
−3

σ
w

/T = 0.5%

E
rr

or
 v

ar
ia

nc
e

0 2500 5000
0

0.002

0.004

0.006

0.008

0.01
σ

w
/T = 5%

E
rr

or
 v

ar
ia

nc
e

h h

h
h

Figure 22: The lower bound on timing estimation error variance at SNR = 5.0 dB.

i. The steady state bound can be rewritten as

h =
σ σw
T√

K1(4 +K1
σ2
w

σ2T 2)
, (118)

where K1 = (2π2/3) − 1. For σ2
w/T

2 � σ2, which would be the case, for

example, with SNR ∼ 5dB and σw/T < 10%, we can approximate

h ≈ K2
σw
T
σ, (119)

where K2 = 1/(2
√
K1). Therefore, the steady state lower bound is linear

in both σw/T and σ. If we look at the other extreme σ2
w/T

2 � σ2, we get

h ≈ σ2

K1

, (120)

independent of σw/T . This behavior is illustrated in Figure 23. When

σ2
w/T

2 is large, we have very little a priori information about the pa-

rameters to be estimated, and therefore, it is not surprising that the CRB

approaches σ2

K1
which is the CRB associated with the accumulation process

with no a priori information.

71

0 0.05 0.1
0

0.5

1

1.5

2
x 10

−3

(c)

σ

h

0 0.1 0.2 0.3
0

0.5

1

1.5

2
x 10

−3

(d)

σ
w

/T

h

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
(a)

σ

h

0 0.5 1
0

0.2

0.4

0.6

0.8

1
(b)

σ
w

/T

h

σ w
/T

σ

σ w
/T

σ

Figure 23: Steady state bound at the two extremes.

Figure 23-(a) plots h vs. σ for σw/T going from 0.1 to 1 in steps of 0.1.

The arrow shows the direction of increasing σw/T . Figure 23-(b) plots h

vs. σw/T for σ from 0.5 to 5 in steps of 0.5. This is the case where we

have σ2
w/T

2 � σ2, and h is linear in both σ and σw/T as given by (119).

Figures 23-(c) and 23-(d) deal with the other extreme. In Figure 23-(c),

we have h vs. σ for σw/T going from 0.03 to 0.3 in steps of 0.03, and in

Figure 23-(d), we have h vs. σw/T for σ from 0.01 to 0.1 in steps of 0.01.

We see that whenever σ2
w/T

2 � σ2, h is quadratic in σ and independent

of σw/T , as given by (120).

Consider next the shaping function f(i). We can expect this to be a

non-decreasing function of the symbol index i, due to the random walk

model being used for the timing jitter. Since we start off with perfect

acquisition, we expect the variance to rise from 0, as is indeed the case.

As i increases, we reach the steady state bound. But as we approach the

end of the packet, we see a curious exponential deviation from the steady

72

state value, governed by

[J11
1]−1

(N−j)(N−j)

T 2
− h ≈ σ2

w

T 2

η2−2j

η2 − 1
, (121)

the shape of which is independent of N as shown in Figure 24, where

SNR = 5 dB and σw/T = 0.05%. As N increases, this end effect affects a

smaller and smaller fraction of symbols. In other words, the steady state

bound becomes more representative.

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

Time (in symbol periods)

Ti
m

in
g

E
rr

or
 V

ar
ia

nc
e

N
 =

 5
00

0

N
 =

 7
50

0

N
 =

 1
00

00

Figure 24: Shape of the end effect is independent of packet length.

Let r be the ratio of the variance of the last symbol to the steady state

value. From (115) and (121), r ≈ 1 + η−1. From (116), η ≥ 1. When

σ2
w/T

2 � σ2, η ≈ 1 and therefore, r ≈ 2. When σ2
w/T

2 � σ2, η � 1 and

therefore, r ≈ 1. So, for any particular σw/T , as SNR ranges from −∞

to ∞, r goes from 2 to 1. In other words, the end effect becomes less and

less significant as SNR increases.

73

3.3.5 General Model: Frequency Offset + Random Walk

Next, we consider the general timing model given by

τk+1 = τk + ∆T + wk = τ0 + (k + 1)∆T +
K∑
j=0

wj, (122)

where τ0 is the initial timing offset, ∆T is the frequency offset parameter and {wk}

characterize the random walk where {wk} are i.i.d. zero-mean normal random vari-

ables of variance σ2
w. The a priori distribution of τ0 is N (0, σ2

τ0
) and that of ∆T is

N (0, σ2
∆T). To compute the average Fisher information, we recognize that this is an

accumulation process and, therefore, from (108),

E[J τ] =
Eh′

σ2
IN×N . (123)

To get the a priori information matrix, we follow the same procedure as with the

random walk model. We define a new parameter φ = [∆T τ0 w0 w1 . . . wN−2]T , get

the a priori information matrix J
aφ, and finally use the relationship between φ and

τ to get Jaτ .

The a priori distribution fφ(φ) is

fφ(φ) =
1√

2πσ2
∆T

exp

(
−(∆T)2

2σ2
∆T

)
1√

2πσ2
τ0

exp

(
− τ 2

0

2σ2
τ0

)
N−2∏
j=0

1√
2πσ2

w

exp

(
−
w2
j

2σ2
w

)
.

(124)

Therefore, the a priori information matrix for φ is

J
aφ =

1
σ2

∆T

1
σ2
τ0

1
σ2
w

. . .

1
σ2
w

. (125)

74

The parameter vectors τ and φ are related as τ = Mφ, where

M =

0 1 0 0 · · · 0

1 1 1 0 · · · 0

2 1 1 1
. . .

...

...
...

...
...

. . . 0

N − 1 1 1 1 · · · 1

. (126)

The a priori information matrices Jaτ and J
aφ are related by [63]

J
aφ = MTJaτM . (127)

SinceM is not a square matrix, we need a pseudo-inverse ofM to get Jaτ from J
aφ.

Let M † = MT (MMT)−1 be the right pseudo-inverse of M such that MM † = I.

Then,

Jaτ = M †TJ
aφM

†. (128)

The pseudo-inverse M † evaluates to

M † =

− 1
N

1

−1 + 1
N

1

1
N

−1
. . .

...
.

1
N

−1 1

. (129)

Using (125) and (129), we evaluate the a priori information matrix Jaτ . Adding this

to the average Fisher information matrix, we get

JT =
1

σ2
w

β −1 0 . . . 0

−1 λ −1
. . .

...

0
. 0

...
. . . −1 λ −1

0 . . . 0 −1 λ− 1

, where (130)

75

λ = 2 + Eh′
σ2
w

σ2
and

β =

(
N2 −N − 1

N2
+
σ2
w

σ2
τ0

+
σ2
w

N2σ2
∆T

)
+ Eh′

σ2
w

σ2
. (131)

Observe that the a priori information parameters σ2
τ0

and σ2
∆T occur in the denomina-

tor of the fractions in β. When these are zero, this means we have perfect knowledge

of the initial timing offset and the frequency offset and the estimation problem is sim-

ply that of estimating the random walk. Therefore, we assume that σ2
τ0

and σ2
∆T are

non-zero with the understanding that the zero case can be handled by eliminating

suitable parameters from the estimation problem. Proceeding as with the random

walk case, we get the CRB to be

[JT]−1
ij = σ2

w

amax(i,j)nmin(i,j)

nN − nN−1

, where (132)

aj =
ηN−j + η−N+1+j

η + 1
,

nj =
(βη − 1)ηj + (η2 − βη)η−j

η2 − 1
and

η =
λ+
√
λ2 − 4

2
. (133)

3.4 Summary

In this chapter, we derived the CRB on the timing estimation error variance for

different timing models, namely the constant offset, frequency offset and the random

walk cases. For the constant offset case, the CRB is proportional to N−1 and for the

frequency offset case, the CRB is proportional to N−3. For the accumulation process,

the CRB is independent of N and for each element in the parameter array the CRB is

the same as that of estimating a single timing parameter associated with the one-shot

transmission case. This makes intuitive sense since, in an accumulation process, each

new observation also brings with it a new parameter to be estimated.

The CRB is a bound on the estimation error variance of deterministic but un-

known quantities. In practice, we usually have some a priori information about the

76

parameters to be estimated. We analyzed the effect of a priori information on these

estimation problems and showed that a priori information can only reduce the CRB.

The factor by which the CRB improves as a result of the a priori information is a

function of the ratio of the a priori information to the CRB without any a priori

information. To estimate multiple parameters based on the same set of observations,

it is beneficial to exploit this coupling instead of estimating the two parameters in-

dependently.

For the random walk case, the CRB is an increasing function of the symbol in-

dex, and, for a broad range of system parameters, exhibits a steady-state behavior in

that it is almost a constant except towards the beginning and the end of the packet.

We call this constant the steady-state value. The steady-state value becomes more

representative as the block length increases. With low SNR, the steady-state CRB

is proportional to the channel noise standard deviation and also to the random walk

input standard deviation. With a severe random walk, the steady-state CRB is inde-

pendent of the random walk parameter and approaches the CRB of the accumulation

process with no a priori information. Finally, we derived the CRB for a general

timing model consisting of an initial timing offset, a frequency offset and a random

walk.

77

CHAPTER 4

CONVENTIONAL TIMING RECOVERY

In this chapter, we review conventional timing recovery which is based on the phase-

locked loop (PLL) [64]. The PLL generates sampling instants based on the timing

error estimates generated by a timing error detector (TED). We consider two common

kinds of PLL: the first-order PLL and the second-order PLL. As a specific instance of

the TED, we consider the well-known Müller and Mueller (MM) [44] TED which uses

two previous samples and the corresponding decisions to estimate the timing error.

We compare the conventional timing recovery method with the CRB derived in

Chapter 3 and observe that the it does not achieve the CRB. In an effort to bridge

the gap between the PLL-based method and the CRB, we study the Kalman filtering

approach described in [53] and [21]. It has been shown that the Kalman filter for

estimating a general timing offset model, involving an initial timing offset, a frequency

offset and a random walk, takes the form of a PLL with time-varying gains ([53] and

[21]). The Kalman filter is the optimal causal filter with Gaussian noise, in that it

minimizes the mean square estimation error. We derive the CRB for timing estimation

under the causality constraint, and show that the Kalman filter indeed achieves this.

In the tracking mode, it has been shown that the Kalman filter reduces to a

PLL with constant gains [53] operating on the output of a TED. Therefore, once the

optimal PLL gains are chosen, a limiting factor to the performance of the PLL-based

architecture is the TED. Thus, one method to improve the performance of PLL-based

timing recovery is to improve the TED performance. We do this by keeping the TED

architecture the same but passing better decisions to it, as described in Chapter 7.

Alternatively, we could improve performance by relaxing the causality constraint and

78

performing block processing. This is described in Chapter 5.

The PLL-based system is used in the decision-directed mode when the system has

already locked on to the desired stable operating point. Locking on to the desired

operating point is done during acquisition. A method for acquisition is to insert

known symbols at the start of transmission and then use these at the receiver to

perform correlation detection to get coarse timing estimates and then refine these

estimates using the PLL in the trained mode. Hence, the study of the PLL applies

to both the tracking and acquisition modes.

The rest of the chapter is organized as follows. The conventional PLL-based

timing recovery method is reviewed in Section 4.1. In Section 4.2, we compare the

performance of the conventional timing recovery method with the CRB. The equiva-

lence between the PLL and the Kalman filter is discussed in Section 4.3, and finally,

the chapter is summarized in Section 4.4.

4.1 PLL-based Timing Recovery

We consider the same system that was used to derive the CRB. The block diagram

is shown in Figure 21 and is reproduced here in Figure 25.

uncoded i.i.d.
� h(t)

n(t)

y(t)
fakg

N�1

0

Figure 25: System block diagram with timing offsets, channel distortion and additive
noise.

The channel output waveform y(t) is given by

y(t) =
N−1∑
l=0

alh(t− lT − τl) + n(t), (134)

where T is the bit period, al ∈ {±1} are the N i.i.d. data symbols, h(t) is the channel

impulse response, n(t) is additive white Gaussian noise, and τl is the unknown timing

79

offset for the lth symbol. After low-pass filtering y(t) at the receiver to remove the

out-of-band noise, the resulting continuous-time waveform r(t) can be modeled as

r(t) =
∑
l

alh(t− lT − τl) + n1(t), (135)

where n1(t) is band-limited to [− 1
2T
, 1

2T
). The continuous-time waveform r(t) is then

sampled at timing instants kT + τ̂k based on the estimates {τ̂k} of {τk} produced by

the timing recovery system. Ideally we would like to sample at instants kT + τk.

Conventional timing recovery is based on a PLL. A first-order PLL updates its

estimate of τk according to

τ̂k+1 = τ̂k + αε̂k, (136)

where α is the PLL gain, and where ε̂k is the receiver’s estimate of the estimation

error εk = τk − τ̂k. For zero steady-state error while tracking a frequency offset, we

employ a second-order PLL which updates the estimate of τk according to

τ̂k+1 = τ̂k + αε̂k + β
k−1∑
l=0

ε̂l, (137)

where we have an additional gain parameter β.

The receiver employs a timing error detector (TED) to arrive at timing error es-

timates. The widely-used Müller and Mueller (MM) TED [44] generates ε̂k according

to

ε̂k =
3T

16
rkd̂k−1 − rk−1d̂k, (138)

where d̂k is the receiver’s estimate of the noiseless, perfectly-timed kth sample dk given

by

dk =
∑
l

alh(kT − lT). (139)

For the PR-IV channel that has the pulse shape

h(t) = sinc
(
t

T

)
− sinc

(
t− 2T

T

)
, (140)

80

the noiseless, perfectly timed samples are given by

dk =
∑
l

alh(kT − lT)

= ak − ak−2. (141)

As discussed in Chapter 2, performance of the Mueller and Müller TED can be

improved by using soft estimates d̃k in place of hard estimates d̂k. For the PR-IV

channel, we use a memoryless soft slicer of the form

d̃k =
2 sinh(2rk/σ

2)

cosh(2rk/σ2) + e2/σ2 . (142)

4.2 PLL vs. CRB

PLL
UPDATE

f(t)y(t)

rcv. filter

T.E.D.

kT + kτ̂

rk

k ∈{ 0, ±2}d̂

to Viterbi detector

kε̂

r t()

Figure 26: Conventional timing recovery.

The block diagram of the conventional timing recovery block is shown in Figure 26.

The received waveform y(t) is first filtered by a low-pass filter with impulse response

sinc(t/T) and then sampled at instants kT+τ̂k determined by the PLL, which operates

on the timing error estimates ε̂k produced by the TED. We use the MM TED with

soft decisions of (142) as opposed to the conventionally used hard decisions. We next

evaluate the performance of this scheme for the three timing models discussed earlier,

namely constant offset, frequency offset and random walk.

81

-8 -3 2 7
0.2%

2%

20%

SNR (dB)

0.3%

1%

10%

3%

R
M

S
 T

im
in

g
E

rr
or

σ ε
 /

T

CRB

Trained PLL

Soft PLL

Figure 27: Constant Offset: Decision-directed case approaches the trained case as
SNR increases.

4.2.1 Constant Offset

The (normalized) RMS timing error σε =
√
E[(τ − τ̂)2] is plotted in Figure 27 as

a function of SNR for the PLL-based timing recovery system with channel impulse

response p(t) = sinc(t/T). The timing offset was chosen to be τ/T = π/20, the block

length N = 5000, α = 0.01 and β = 0. To arrive at a single parameter τ̂ from the

PLL output, we averaged the final 100 samples to leave out the initial transients,

and also to have enough samples for the result to be statistically reliable. The gain

parameters were chosen to minimize the timing error variance for the last 100 samples.

As the SNR increases, the decisions become more reliable and the performance of the

decision-directed system (denoted by “Soft PLL”) approaches that of the trained

PLL. The trained PLL is about 5 dB away from the CRB. This gap can be closed

by using a variable-gain PLL. In the current set-up, the gain parameter α should be

high enough to allow the PLL to rise to the actual value within the block length but

low enough so that the estimate is not too noisy. But with the variable-gain PLL,

we can choose a high value of α to start with to allow a small rise time and drop α

to reduce the noise variance. In Chapters 5 and 7, we look at two other means of

improving the performance:

82

• using better timing recovery architecture, and

• using better decisions in the TED through iterative timing recovery.

For the constant offset, we need to arrive at a single timing estimate parameter

from the N parameters that form the output of the PLL. We restricted ourselves to

timing estimates from the PLL towards the end of the packet. Another approach

not explored here is to use a time-varying gain for the PLL, and combine the PLL

outputs using some suitably chosen weights to arrive at a single timing estimate. This

approach could only perform better than the one used for our simulation results.

4.2.2 Frequency Offset

0 1000 2000 3000 4000

0

2

4

6

8

k

τ̂k
τk

Figure 28: PLL timing estimate is a noisy version of the actual timing offset.

Conventional timing recovery uses a second-order PLL to track a frequency offset,

and the PLL operates on timing error estimates generated by the Mueller and Müller

TED as before. The output of the PLL, {τ̂k}, is a noise-corrupted version of the

actual timing offsets {τk}. An example is shown in Figure 28. To extract the two

parameters of interest τ̂0 and ∆̂T from the N outputs of the PLL {τ̂k}, we use least

squares estimation. Specifically,

∆̂T =
〈kτ̂k〉 − 〈k〉〈τ̂k〉
〈k2〉 − 〈k〉2

,

τ̂0 = 〈τ̂k − k∆̂T 〉, (143)

83

where 〈x(k)〉 = 1
N

N−1∑
k=0

x(k).

0 4 8 12 16

10–4

10–3

SNR (dB)

R
M

S
 E

st
im

at
io

n
E

rr
or

 in
∆T

 /
T

CRB

Trained

Decision-directed

0 4 8 12 16

10–2

SNR (dB)

R
M

S
 E

st
im

at
io

n
E

rr
or

 in
τ 0

 /
T

2x10–2

CRB

Trained

Decision-directed

6x10–2

Figure 29: Frequency offset: Trained PLL-based system does not achieve the CRB.

Figure 29 shows the normalized RMS estimation error as a function of SNR for

the PLL-based system with the PR-IV channel, averaged over 10000 blocks of length

N = 250, with system parameters being ∆T/T ∼ unif[0, 0.005], τ0/T ∼ unif[0, 0.1],

α chosen to minimize the RMS estimation error, and β = α2/4. The trained system

is about 2 dB away from the CRB. For low SNR, we have a significant performance

penalty in the absence of training.

4.2.3 Random Walk

The performance of trained PLL gives a heuristic lower bound for the performance

of realistic receiver structures that use the PLL for timing recovery. In Figure 30, we

plot the steady state CRB and the RMS timing estimation error of the trained PLL

with the PR-IV channel for the following system parameters: σw/T = 0.5%, block

length N = 500, and the PLL performance being averaged over 1000 trials. The

performance of the PLL is a strong function of the gain parameter α, and therefore,

α has to be optimized for each SNR. The PLL error variance is plotted for various

values of α. Taking the minimum of the error variance over all α gives us the best

performance we can expect using the trained PLL. We see that the average timing

84

0 10 20 30
0

1%

2%

3%

4%

5%

E
S

T
IM

A
T

IO
N

 E
R

R
O

R
 J

IT
T

E
R

σ ε
⁄T

(%
)

SNR (dB)

7 dB

α = 0.01

α = 0.02

α
=

0.03
α

=
0.05

α
=

0.1

α
=

0.2

α = 0.03

α = 0.05

Steady State CRB

Figure 30: Random walk: Trained PLL does not achieve the steady-state CRB.

estimation error variance of the trained PLL is about 7 dB away from the steady-state

CRB.

This gap of 7 dB has to be put in perspective by the fact that the CRB is not at-

tainable in this case. For the CRB to be attainable, the a posteriori density fτ |r(τ |r)

needs to be Gaussian, where r is the vector of observations and τ is the vector of

timing parameters [63]. With the PR-IV channel and the random walk timing model,

this is not the case.

Though the results above suggest that the PLL is not the optimal CRB-achieving

strategy, a first-order PLL does minimize the timing estimation error variance with a

random walk timing model and the causality constraint. Indeed, it turns out that a

slightly modified first order PLL is the optimal (with respect to minimizing the timing

estimation error variance) causal processing when tracking the general model involv-

ing an initial timing offset, frequency offset and a random walk. During acquisition,

however, the optimal causal processing is a second-order PLL with time-varying gains.

These results follow from applying adaptive Kalman filter theory to the problem of

85

tracking a random walk, which is discussed next.

4.3 PLL vs. Kalman Filter

Consider the general timing model with an initial timing offset τ0 with a priori vari-

ance σ2
τ0

, a frequency offset parameter ∆T with a priori variance σ2
∆T and a random

walk characterized by i.i.d. zero-mean normal random variables {wk} of variance σ2
w.

The evolution of the timing offsets can be modeled as [21] [12]

Xk+1 =

 τk+1

τ̇k+1

 =

 1 1

0 1

 τk

τ̇k

+

 wk

ẇk

= FXk +W k, (144)

For our timing model, ẇk = 0 and τ̇k = ∆T for all k. This defines the state equation

for the system. A simpler state equation would be

τk+1 = τk + wk, (145)

where the random variables wk are i.i.d. normal random variables with mean ∆T and

variance σ2
w. A difficulty with this model is that the mean of the random variables

wk is itself an unknown parameter, and is part of the estimation problem. While

theoretically, there is little difference between the models of (144) and (145), the

model of (144) allows standard Kalman filtering analysis. Therefore, we stick to the

two-dimensional system characterization of (144).

We assume a timing error detector (TED) that generates timing error estimates

ε̂k given by

ε̂k = εk + νk,

= τk − τ̂k + νk, (146)

where τ̂k is the receiver’s estimate of τk, εk = τk − τ̂k is the timing error, and the

observation noise terms νk are i.i.d. zero-mean normal random variables with variance

86

σ2
v . This does not give an explicit measurement equation in terms of τk directly. We

use a hypothetical measurement equation of the form

yk = τk + νk. (147)

Driessen [21] showed that the Kalman filter, which is the optimal causal processing

to minimize the mean squared error for the linear Gaussian model, needs only ε̂k and

generates timing estimates τ̂k according to

τ̂k+1 = τ̂k + αk ε̂k +
k−1∑
i=0

βiε̂i, (148)

which is exactly the structure of a second-order PLL, albeit with time-varying gains.

Let X̂k+1|k = [τ̂k+1
ˆ̇τ k+1]T be the Kalman filter estimate of X given all the obser-

vations from time 0 to time k. Then the Kalman update equation can be rewritten

as

X̂k+1|k = FX̂k|k−1 + FKk ε̂k, (149)

where Kk = [αk βk]
T is the time-varying Kalman gain. Patapoutian [53] derived

closed-form expressions for the gains in the so-called acquisition (i.e., assuming σ2
w =

0) and the so-called tracking (i.e., assuming k → ∞) modes. The terminology of

[53] regarding acquisition and tracking is based on the assumption of a slowly varying

random walk that can be neglected during the short duration of the acquisition phase.

In addition, only the asymptotic tracking performance was considered. In the so-

called acquisition mode, the gain vector evaluates to [53]

Kk =
1

σ2
vck

k2σ2

v

σ2
τ0

+ σ2
v

σ2
∆T

+ k(K+1)(2K+1)
6

kσ2
v

σ2
τ0

+ k(k+1)
2

 , (150)

where

ck =
σ2
v

σ2
τ0
σ2

∆T

+
k(k + 1)(2k + 1)

6
+
k + 1

σ2
∆T

+
k(k + 1)2(k + 2)

12σ2
v

. (151)

The estimation error covariance matrix P k|k−1 = E[(Xk − X̂k|k−1)2] is given by [53]

P k|k−1 =
1

ck−1

k2σ2

v

σ2
τ0

+ σ2
v

σ2
∆T

+ k(k+1)(2k+1)
6

kσ2
v

σ2
τ0

+ k(k+1)
2

kσ2
v

σ2
τ0

+ k(k+1)
2

σ2
v

σ2
τ0

+ k

 . (152)

87

This is precisely the error variance corresponding to the CRB for estimating the

timing parameters τ0 + k∆T and ∆T assuming that we have only k data symbols. In

Chapter 3, we derived the CRB for estimating τ0 and ∆T . These can be modified for

the parameters τ0 + k∆T and ∆T , and the CRB in this case is the same as P k|k−1.

Therefore, the Kalman filter is the optimal causal processing in that it achieves the

CRB assuming that only the past observations are available. In Chapter 5, we develop

a linear observation model for the timing offsets and analyze the optimal processing

based on the linear model assuming that all the observations, and not just the ones

from the past, are available.

In the so-called tracking mode of [53], the steady-state gain K = limk→∞Kk =

[α β]T evaluates to [53]

α = 1− z0z1,

β = (1− z0)(1− z1), (153)

where zi = (γi −
√
γ2
i − 4)/2, i ∈ {0, 1} and

γi = 2 +

(
σ2
w − σ2

wẇ

2σ2
v

)
+ (−1)i

√√√√(σ2
w − σ2

wẇ

2σ2
v

)2

− σ2
ẇ

σ2
v

. (154)

In our case, σẇ = σwẇ = 0. This leads to

α =
σw
σv

√√√√1 +
σ2
w

4σ2
v

− σ2
w

2σ2
v

,

β = 0. (155)

This means that the Kalman structure for tracking is simply a modified first-order

PLL whose update equation is given by

τ̂k+1 = τ̂k + αε̂k + ∆̂T , (156)

where ∆̂T is the receiver’s estimate of the frequency offset parameter ∆T . If the

receiver has an independent means of estimating ∆T , then we simply need to run

88

a first-order PLL to track a random walk. This insight is used later in Chapter 6

where we choose the optimal preamble placement to minimize the CRB on timing

estimation error variance.

4.4 Summary

In this chapter, we reviewed the conventional timing recovery method based on the

PLL. The PLL updates the timing estimates based on the timing error estimates

produced by the TED and the performance of the overall timing recovery block is a

strong function of the performance of the TED. Next, we compared the performance

of the PLL with the CRB for the PR-IV channel and observed that there is a gap

between the performance of the PLL and the CRB. When tracking a random walk

with a causality constraint at the receiver, we showed that the first-order PLL is the

optimal timing recovery recovery method in that it achieves the CRB. In Chapter 5,

we present block-processing, non-causal timing recovery architectures that perform

better than the PLL. In Chapter 7, we present iterative timing recovery which is an

alternative method of performance improvement by passing better decisions to the

PLL when we have an outer error control code.

89

CHAPTER 5

OUTPERFORMING THE PLL

In Chapter 3, we derived lower bounds on the error variance of timing recovery

algorithms. In Chapter 4, we compared the performance of the conventional PLL-

based timing recovery scheme with these bounds and observed a performance gap.

In this chapter, we consider alternatives to the PLL that perform better. As before,

we treat four different cases: constant offset, frequency offset, random walk and the

general timing model.

With a constant timing offset, trained maximum-likelihood (ML) estimation using

gradient search achieves the CRB. With a frequency offset, simulations show that the

trained Levenberg-Marquardt (LM) method [57], which is a combination of gradient

descent and Newton’s method, achieves the CRB. In both these cases, we use the

PLL-based system as the initialization. The performance of both the gradient descent

and the LM algorithm depends on the initialization provided, and without training

especially at low SNR, the PLL performs poorly enough for these algorithms to not

achieve the CRB.

With a random walk, ML estimation is prohibitively complex. Instead, we pro-

pose MAP timing recovery based on a linearization of the PLL output. MAP tim-

ing recovery takes the form of a matrix operation on the PLL outputs, and can be

simplified to take the form of a time-invariant filtering followed by a time-varying

scaling operation. With training, and for the system parameters considered here, this

filtering-and-scaling approach performs 5 dB better than the PLL and is within 2 dB

from the steady-state CRB.

90

The rest of the chapter is organized as follows. The system model under consid-

eration is summarized in Section 5.1. Block processing algorithms for the constant

offset, frequency offset and the random walk cases are presented in Sections 5.2, 5.3

and 5.4 respectively. Finally, we summarize results and observations in Section 5.5.

5.1 System Model

uncoded i.i.d.
� h(t)

n(t)

y(t)
fakg

N�1

0

Figure 31: System block diagram with timing offsets, channel distortion and additive
noise.

We again consider the system model described in Figure 31. The channel output

waveform y(t) is given by

y(t) =
N−1∑
l=0

alh(t− lT − τl) + n(t), (157)

where T is the bit period, al ∈ {±1} are the N i.i.d. data symbols, h(t) is the channel

impulse response, n(t) is additive white Gaussian noise, and τl is the unknown timing

offset for the lth symbol.

After low-pass filtering y(t) at the receiver to remove the out-of-band noise, the

resulting continuous-time waveform r(t) can be modeled as

r(t) =
∑
l

alh(t− lT − τl) + n1(t), (158)

where {ak} are the data symbols, h(t) is the channel impulse response, n1(t) is band-

limited to [− 1
2T
, 1

2T
), and {τk} are the timing offsets introduced by the channel.

The continuous-time waveform r(t) is then sampled at time instants {kT + τ̂k} to

arrive at samples {rk}. If we choose τ̂k = 0, we get uniform samples. For simplicity in

91

the sequel, we introduce the following notation. Let r be the vector of observations, τ

be the vector of timing parameters to be estimated and a be the vector of transmitted

symbols.

5.2 Constant Offset: Maximum-likelihood Esti-

mation

An estimator that achieves the CRB is called an efficient estimator. If an efficient

estimator exists, then it is the maximum-likelihood (ML) estimator which maximizes

the likelihood fr|τ (r|τ), or equivalently, the log likelihood function ln fr|τ (r|τ) [63].

For the constant offset case, the waveform r(t) is given by

r(t) =
∑
l

alh(t− lT − τ) + n1(t), (159)

and the ML estimate τ̂ is the one that minimizes the cost function J(τ̂ ;a) given by

J(τ̂ ;a) =
∫ ∞
−∞

(r(t)−
∑
l

alh(t− lT − τ̂))2 dt. (160)

Assuming that h(t) is band-limited, so that sampling at a rate of 1/T provides

sufficient statistics, we can rewrite the cost function in terms of uniform samples

rk = r(kT) as

J(τ̂ ;a) =
∞∑

k=−∞
(rk −

∑
l

alh(kT − lT − τ̂))2. (161)

5.2.1 ML: Gradient Descent

For the trained case where a is known, the minimization of the cost function in (161)

can be performed by gradient descent. The gradient search is initialized using an

estimate τ̂0 obtained by using a low-complexity method like a PLL. Further estimates

are arrived at by using

τ̂i+1 = τ̂i − µJ ′(τ̂i;a), (162)

where µ is the learning constant and J ′(τ̂i;a) is the gradient of J(τ̂ ;a) (with respect

to τ̂) evaluated at the current estimate τ̂i.

92

Without training, the PLL in the initial step is operated in the decision-directed

mode. For the gradient search, we use the cost function J(τ̂ ; â) where we have

replaced the data symbols a with the receiver’s estimates â.

At the ith iteration (i > 1), new uniform samples rnew
k are generated by resampling

r(t) at time instants kT + τ̂i. These are then used to generate memoryless soft

estimates ãk = E[ak|rk] which are used in place of ak in (162). Resampling r(t)

might not be practical in many cases. We can instead use the fact that {rk} provides

sufficient statistics for r(t) and interpolate {rk} to get {rnew
k } as follows:

rnew
k =

∑
l
rl sinc(kT − lT + τ̂i). (163)

5.2.2 Simulation

-8 -3 2 7
0.2%

2%

20%

SNR (dB)

0.3%

1%

10%

3%

R
M

S
 T

im
in

g
E

rr
or

σ ε
 /

T

Trained ML, CRB

Trained PLL

Decision-directed PLL

Decision-directed ML

Figure 32: Constant Offset: ML estimator achieves the CRB.

The performance of the iterative ML estimator for the system with impulse re-

sponse h(t) = sinc(t/T) is shown in Figure 32 as a function of SNR. The algorithm is

initialized with the PLL. The timing offset was chosen to be τ/T = π/20, the block

length N = 5000, and the PLL gains were α = 0.01 and β = 0. These are the same

93

parameters chosen when we compared the performance of the PLL to the CRB for the

constant offset case in Figure 27, and those curves are reproduced here. In addition,

we have shown the trained and decision-directed ML cases in Figure 32. As opposed

to the PLL case where we arrived at the timing estimate based on the final 100 PLL

outputs in Section 4.2.1, the ML estimator directly outputs a single timing estimate,

which is used in the RMS error computation. The trained ML appears to be efficient

and the decision-directed case approaches the trained case as the decisions become

more reliable.

5.3 Frequency Offset: ML Estimation

For the frequency offset case, the waveform r(t) is given by

r(t) =
∑
l

alh(t− lT − τ0 − l∆T) + n1(t). (164)

The ML estimator that produces estimates ∆̂T and τ̂0 minimizes the following cost

function:

J(τ̂0, ∆̂T ;a) =
∫ ∞
−∞

(r(t)−
∑
l

alh(t− lT − l∆̂T − τ̂0))2 dt. (165)

Again, assuming that uniform samples {rk} taken at a sampling rate of 1/T provide

sufficient statistics for r(t), we can rewrite the cost function in terms of these samples

as

J(τ̂0, ∆̂T ;a) =
∞∑

k=−∞
(rk −

∑
l

alh(kT − lT − l∆̂T − τ̂0))2. (166)

As in the previous section, this minimization can be done using gradient descent.

However, the cost function of (166) is not suited for gradient descent. To show this,

in Figure 33, we plot the cost function J(τ̂0, ∆̂T ;a) for a particular a, ∆T and τ0

as a function of ∆̂T from −0.1T to 0.1T . In the graph, we have overlaid the cost

function evaluated for values of τ̂0 going from −0.5T to 0.5T . As a function of τ̂0,

the cost function is parabolic and therefore, gradient descent along τ̂0 is feasible. But

94

−0.1 −0.05 0 0.05 0.1
0

500

1000

1500

∆T̂ T⁄

J
∆

T̂
τ̂ 0,

(
)

Figure 33: The cost function surface makes gradient descent unsuitable.

along ∆̂T , the global minimum of J(τ̂0, ∆̂T ;a) occurs in a narrow valley. Hence, the

efficacy of gradient search is very sensitive to initialization.

In the trained case, these issues can be addressed by implementing the Levenberg-

Marquardt (LM) method, which is a combination of gradient descent and Newton’s

method [57]. The initial estimate for the LM iterations is obtained by performing

a least-squares estimation using the output of the second-order PLL as described in

Section 4.2.2. The LM method is then implemented as described below.

5.3.1 ML: Levenberg-Marquardt Method

Let a = [a0 a1 . . . aN−1]T be the data vector, θ = [∆T τ0]T be the parameter vector,

r = [r0 r1 . . . rN−1]T where rk =
∑
l alh(kT − lT − l∆T − τ0) is the kth noiseless

uniform sample. Our model then becomes

r = f(a;θ), (167)

95

where f(a;θ) is a suitably defined vector function. Denote the kth element of f by

fk. Given a and noisy measurements r̂, we need to pick θ̂ to minimize the error

E(θ̂) =
∑
k

(fk(a; θ̂)− r̂k)2. (168)

At the ith iteration, let θi be the current estimate. Implementing gradient descent,

we would first compute the gradient d and then update the estimate to get θi+1 as

follows.

d =
∑
k

(fk(a;θi)− r̂k)[∇f(a;θi)]k

θi+1 = θi − µd. (169)

Here, [∇x]k denotes the gradient of the kth element of x. Implementing Newton’s

method, we would compute the gradient d as above and the approximate Hessian H ,

and then update as follows.

H =
∑
k

[∇f(a;θi)]k[∇f(a;θi)]
T
k

θi+1 = θi −H−1d. (170)

Gradient descent works by moving along the direction of the greatest negative

gradient, whereas Newton’s method fits an approximate parabolic bowl to the surface

and tries to locate the minimum of this bowl. These two methods can be combined by

a weight factor λ which will determine the relative weight given to these two methods

in the update equation:

θi+1 = θi − (H + λI)−1d. (171)

The factor λ is adjusted according to whether the error E is increasing or decreasing

at each iteration. If E has increased after the update, we retract the step, increase λ

by a significant factor and try the update again. If the error has decreased, we accept

the step, decrease λ by the same factor and proceed. Essentially, we put more weight

in the Newton’s method when we are in the right direction to converge faster, and

revert to gradient descent if we are headed in the wrong direction.

96

PLL LS

Uniform
Sampler Compute

Update

r t() τ̂ ŵ0

Initialization

Levenberg-Marquardt

ŷ

ŵ

θ̂i 1+

λ

Figure 34: The Levenberg-Marquardt method.

To get around the problem of slow convergence in a long, narrow valley, we need

to move in the direction in which the gradient is smaller, and this is achieved by

replacing the identity in (171) with the diagonal of H :

θi+1 = θi − (H + λdiag[H])−1d. (172)

This is the update equation for the Levenberg-Marquardt method. The LM algorithm

is summarized in the block diagram shown in Figure 34.

5.3.2 Simulation

The LM algorithm was implemented on the PR-IV system with parameters N =

250, ∆T/T ∼ unif[0, 0.005], and τ0/T ∼ unif[0, 0.1]. For the PLL, α was chosen to

minimize the RMS estimation error and β = α2/4. The RMS timing error for the

PLL averaged over 10000 blocks was shown in Figure 29 and the PLL performed

about 2 dB away from the CRB. In Figure 35, we plot the performance of the trained

LM system which evidently achieves the CRB.

The LM algorithm speeds up convergence in the steep, narrow valley, but doesn’t

mitigate the sensitivity of the algorithm to the initialization. In the decision-directed

97

0 4 8 12 16
10–5

10–4

10–3

SNR (dB)

R
M

S
 E

st
im

at
io

n
E

rr
or

 in
∆T

 /
T

0 4 8 12 16

10–2

10–1

SNR (dB)

R
M

S
 E

st
im

at
io

n
E

rr
or

 in
τ 0

 /
T

CRB

Trained LM

CRB

Trained LM

Figure 35: Frequency offset: Trained LM achieves the CRB.

case, the PLL performance is much worse without training, especially at low SNR.

(Figure 29.) As we use the PLL for initialization, it is much more likely that the LM

algorithm would converge to a local minimum that is not the global minimum. With-

out training, cycle slips occur much more often and therefore, the parameters ∆̂T and

τ̂0 estimated using the least squares estimation from the PLL output become mean-

ingless, further worsening the initialization. Therefore, we restrict the performance

evaluation of the LM algorithm to the trained case.

5.4 Random Walk: Maximum A Posteriori (MAP)

Estimation

In both the cases discussed so far, i.e., the constant offset and the frequency offset

cases, we assumed no a priori information about the parameters to be estimated. In

this section, we present the random walk case where we have a priori information

about the timing parameters. Implementing the ML estimator in this case is pro-

hibitively complex. Instead, we develop a linear observation model based on the PLL

output and then, for this linear system, we implement the MAP estimator.

98

PLL
UPDATE

f(t)y(t)

rcv. filter

T.E.D.

kT + kτ̂

rk

k ∈{ 0, ±2}d̂

to Viterbi detector

kε̂

r t()

Figure 36: Conventional timing recovery.

5.4.1 Linear Model from TED and PLL

The PLL-based timing recovery architecture was discussed in Chapter 4. The block

diagram is shown in Figure 36. The continuous-time waveform r(t) is sampled at

timing instants kT + τ̂k based on the estimates {τ̂k} of {τk} produced by the first-

order PLL that updates its estimate of τk according to

τ̂k+1 = τ̂k + αε̂k, (173)

where α is the PLL gain, and where ε̂k is the timing error detector’s (TED) estimate

of the estimation error εk = τk − τ̂k. The Müller and Mueller (MM) TED generates

ε̂k according to (138).

It was shown (Section 4.3, [53], [12]) that the PLL has the same structure as a

Kalman filter that tracks the timing variations assuming a hidden linear measurement

model

yk = τk + νk, (174)

where yk is the implicit measurement and the noise νk is independent of {τk}. Using

the linearized model for the TED given by

ε̂k = εk + νk,

= τk − τ̂k + νk, (175)

99

we get the following simple method of accessing the hidden measurements yk:

yk = τ̂k + ε̂k. (176)

The measurements yk are, therefore, arrived at by adding corresponding outputs

of the PLL and the TED. The PLL outputs an estimate of τk assuming that only

observations {rl}k−1
0 are available. This is, therefore, an a priori estimate of τk. To

this, we add ε̂k, which is based on the present observation rk as well. Therefore, yk is

an a posteriori estimate of τk and the quality of this estimate depends on the quality

of the TED output. In the next section, we use these measurements {yk} to estimate

{τk}.

5.4.2 MAP Estimator for the Linear Model

In vector notation, the linear measurement model can be written as follows.

y = τ + ν, (177)

where

y = [y0 y1 . . . yN−1]T ,

τ = [τ0 τ1 . . . τN−1]T ,

ν = [ν0 ν1 . . . νN−1]T . (178)

We assume that ν is independent of τ , and also that ν is N (0, σ2
nI), where σ2

n

is the error variance of the TED. To get the statistics of τ , consider the general

case where the timing offsets consist of an initial phase offset φ0, a frequency offset

characterized by ∆T , and a random walk characterized by {wk}, k = 1, . . . , N − 1.

100

Let φ = [∆T φ0 w1 . . . wN−1]T . Then

τ =

0 1

1 1 1

2 1 1 1

...
...

...
...

. . .

N − 1 1 1 1 · · · 1

φ = Mφ. (179)

The vector φ is assumed to be N (0,Kφ) where Kφ = diag(σ2
∆T , σ

2
φ0
, σ2

w, . . . , σ
2
w).

Therefore, τ is Gaussian as well, with a covariance matrix given by [63]

Kτ = MKφM
T . (180)

Evaluating this, we get

[Kτ]ij = ijσ2
∆T + σ2

φ0
+ min(i, j)σ2

w, (181)

for i, j = 0, 1, . . . , N − 1.

The MAP estimator for this linear Gaussian model is [63]

τ̂map(y) = (Kτ + σ2
nI)−1Kτy. (182)

An alternative representation of this estimator is using the eigendecomposition of

Kτ . Let {W ,Λ} represent this decomposition, such that Kτ = W TΛW , where Λ

is a diagonal matrix with the main diagonal entries being {λi}Ni=1, the N eigenvalues

of Kτ , and W is a unitary matrix with the ith row being the eigenvector of Kτ

corresponding to the eigenvalue λi. The MAP estimator can then be rewritten as

τ̂map(y) = W T (Λ + σ2
nI)−1ΛWy. (183)

The MAP estimator for this system is efficient, i.e., it achieves the CRB for the

linear model of (177). Let ε = τ − τ̂map(y) be the estimation error. The error

variance for the MAP estimator is given by

E[εTε] = σ2
n

N∑
i=1

λi
λi + σ2

n

. (184)

101

The error variance of the MAP estimator is a function of the TED noise variance

σ2
n. In Figure 7 of Chapter 2, we plotted the second moment of the MM TED timing

error as a function of the actual timing error ε for SNR = 10 dB for the PR-IV system.

The second moment is not independent of ε. Also, the estimator is not unbiased over

the entire range of ε. However, to simplify the analysis, we assume unbiasedness of

the TED. Also, we pick the value of the timing error second moment at the origin

as σ2
n, i.e., σ2

n = E[ε̂2]ε=0. This is a good approximation to the actual performance

in the tracking mode where ε/T is small, and also gives a lower bound on the actual

performance since E[ε̂2]ε=0 < E[ε̂2]ε6=0.

0 5 10 15 20
10–3

10–2

10–1

1

10

SNR (dB)

M
ea

su
re

m
en

t E
rr

or
 V

ar
ia

nc
e

σ n2

Ideal

Soft

Hard

Figure 37: MM TED measurement error variance.

Figure 37 plots the measurement error variance σ2
n for the MM TED with ideal,

hard and soft (both memoryless) decisions. As SNR increases, both hard and soft

decisions become more accurate, and the error variance approaches that of the ideal

decision case.

Figure 38 compares the performance of the MAP estimator with the trained PLL

performance and the steady-state CRB for a random walk timing offset model with

σw/T = 0.33%, averaged over 1000 blocks of length N = 500. The MAP estimator

102

0 5 10 15 20

10–4

10–3

SNR (dB)

T
im

in
g

E
st

im
at

io
n

E
rr

or
 V

ar
ia

nc
e

Trained PLL

MAP

CRB

Figure 38: Actual MAP performance 1.5 dB away from the steady-state CRB.

operated on the output of a trained PLL. The MAP estimator performs to within

1.5 dB of the CRB and is around 5.5 dB better than the trained PLL. This 1.5 dB

gap has to be put in perspective by the fact that the CRB is not attainable for the

overall non-linear system with a PR-IV channel and a random walk timing model

(Section 4.2.2). An additional contributor to the performance gap is the inaccuracy

of the linear model.

The MAP estimator developed here can be viewed in a more general context.

For any non-linear system characterized by a non-linear measurement equation, the

traditional approach has been to linearize the measurement equation using Taylor

series techniques and then use the Kalman filtering approach. The approach taken

here is an alternative approach. With a suitable chosen timing error detector, the

phase-locked loop gives us access to linear observations and we could then use the

projection operator defined by the MAP equation to get the desired estimates.

5.4.3 Suboptimal Low-Complexity Implementations

The MAP estimator described above involves matrix operations and becomes infea-

sible or at least computationally burdensome for reasonable block lengths of around

103

5000 which are common in the magnetic recording industry. In this section, we

propose suboptimal implementations of the MAP estimator that allow a trade-off

between performance and complexity.

We first look at the MAP estimator error covariance matrix Kε = E[εεT]. In

terms of the eigendecomposition of Kτ , this evaluates to

Kε = W T {(Λ + σ2
nI)−1Λ(Λ + σ2

nI)Λ(Λ + σ2
nI)−1 · · ·

−(Λ + σ2
nI)−1Λ2 −Λ2(Λ + σ2

nI)−1 + Λ
}
W . (185)

Recognizing that Λ is a diagonal matrix, this can be simplified to

Kε = σ2
nW

T (Λ + σ2
nI)−1ΛW . (186)

From (183) and (186), we can write

τ̂map(y) =
1

σ2
n

Kεy. (187)

Let f1 be the N × 1 vector containing the elements of the main diagonal of Kε

and let f = f1/(f1(N/2)). (We have assumed that N is even. For odd N , pick

bN/2c.) We call f the shaping function. Figure 39 shows the shaping function for

σw/T = 0.33%, SNR = 10 dB, and N = 500.

Figure 40 plots row 250 of Kε with same parameters as above. In general, let

g = [g1 g2 · · · gN] represent the (N/2)th row of Kε. (We have assumed that N is

even. For odd N , pick bN/2c.) The other rows of Kε are very well approximated

by suitably zero-padding and shifting g, and scaling it by the corresponding element

of the shaping function. For instance, denote the ith row of Kε by rowi, and let

i < N/2. Let shift(x, k, dir) denote the operator whose output is the vector formed

by suitably zero-padding the vector x and shifting it by k units to the left or to the

right depending on whether dir = left or dir = right respectively. Then

rowi ≈ f(i)× shift(g,
N

2
− i, left). (188)

104

0 100 200 300 400 500
0

0.5

1

1.5

2

Symbol Index

S
ha

pi
ng

 F
un

ct
io

n
(

f
)

Figure 39: The shaping function has steady-state value of unity.

The case for i > N/2 is similar.

Essentially, we have approximated the MAP operation by the following structure.

τ̂map(y) ≈ A1A2y, (189)

where A1 is a diagonal matrix with the ith main diagonal entry being f(i) and A2

is the matrix whose rows are the shifted rows defined by (188) neglecting the multi-

plicative factor f(i). This simplifies the implementation greatly since A2 represents a

convolution matrix, and can be implemented as a time-invariant filter whose impulse

response is g. A1 can be implemented as time-varying scaling of the filter output.

The approximate MAP estimator is shown in Figure 41.

To reduce complexity further, we can neglect the factor A1 altogether, and also

truncate the filter to a manageable length. The losses associated with these are shown

in Figure 42 for a random walk timing offset model with σw/T = 0.33%, and N = 500.

The approximation of (189) performs as well as the matrix operation of (183) leading

to significant reduction in the memory reduction. As opposed to the N2 memory ele-

ments needed for the matrix, we now need only 2N elements. Neglecting the shaping

function and implementing only the filtering reduces the memory requirement to N

105

0 100 200 300 400 500
0

0.005

0.01

0.015

Symbol Index

M
id

dl
e

R
ow

 o
fK

ε
(

g
)

Figure 40: Except for shifting and scaling, this is a typical row of Kε.

xgy τ̂map

f

Time-invariant
Filter

Time-varying
Scaling

Figure 41: Approximate MAP estimator.

but more importantly allows a time-invariant filter-implementation. This approxima-

tion leads to a 1.5 dB loss. Further reduction in complexity by truncating the filter

to a total of 100 terms as opposed to 500 leads to a further loss of less than 0.5 dB

at σ2
ε/T

2 = 2× 10−4, still 5 dB better than the PLL. Also, this approximation shows

a cross-over with respect to the performance of the PLL for SNR around 5 dB, i.e.,

for SNR < 5dB, this performs worse than the PLL. This cross-over threshold varies

with the number of filter coefficients used.

All the suboptimal implementations used above required the computation of the

error covariance matrix Kε. Once we have Kε, instead of multiplying the vector y

by Kε, we performed filtering and scaling to reduce complexity. The next simplifying

106

0 5 10 15 20

10–4

10–3

SNR (dB)

T
im

in
g

E
st

im
at

io
n

E
rr

or
 V

ar
ia

nc
e

Filtering onlyTrained PLL
MAP

Filtering + ScalingCRB

Truncated filter

Figure 42: Various suboptimal strategies.

approximation allows us to analytically arrive at the filtering and the scaling values.

We note that the MAP estimator performs close to the CRB and therefore, we replace

Kε in the estimator equation by KCRB as follows.

τ̂map(y) =
1

σ2
n

KCRBy. (190)

With this approximation, we use the CRB expression of Chapter 3, (115), to get

f(i) =
1− ηN−2i−η−N+2i+3

ηN+2−η−N+1

1− 1−η3

ηN+2−η−N+1

,

g(i) =
σ2
w

η2 − 1

η
3N
2
−i+2 − ηN2 −i + η−

N
2

+3+i − η− 3N
2

+1+i

ηN+1 − η−N
, (191)

where

η =
λ+
√
λ2 − 4

2
and λ = 2 + Eh′

σ2
w

σ2
. (192)

Here we have assumed that we have only a random walk timing offset. For the general

model, we use the appropriate CRB derived in Chapter 3. This approximation does

107

not lead to any perceptible difference in performance in the suboptimal strategies

discussed earlier. One more advantage with this analytical approach is that we need

not experimentally measure the second moment of the timing error of the TED. The

expressions are functions only of the channel SNR and the random walk parameter.

5.5 Summary

We proposed methods of achieving the CRB where possible, and where this was not

possible, we proposed methods to improve on the performance of the conventional

PLL-based approach. With a constant timing offset, gradient descent appears to

achieve the CRB in the trained case. With a frequency offset, the cost function to

be minimized exhibits a long, narrow valley and therefore, we use a combination

of gradient descent and Newton’s method to speed up convergence. However, this

combination is rather sensitive to the initialization used. In the trained case, this

method evidently achieves the CRB. With a random walk, we proposed MAP timing

recovery, where we performed post-processing on the outputs of the PLL and the TED.

This performs to within 1.5 dB of the CRB for the system parameters considered.

The MAP algorithm takes the form of a matrix operation on the TED and the

PLL outputs, which becomes impractical for reasonable block lengths. Therefore, we

proposed suboptimal low-complexity implementations of the MAP algorithm, based

on approximating it as a time-invariant filter followed by time-varying scaling.

The main drawback of all the schemes presented in this chapter is the fact that they

are all based on the PLL-based system for initialization, and without training and at

low SNR, are vulnerable to cycle slips. In Chapter 6, we present preamble placement

strategies to reduce cycle slip occurrence, which in turn improves the performance of

these algorithms. In contrast, iterative timing recovery, presented in Chapter 7, does

not suffer from this problem even though it is based on the PLL since it is able to

exploit the presence of the ECC and correct cycle slips on its own.

108

CHAPTER 6

ACQUISITION

In the previous chapters, we developed bounds on timing estimation and also de-

veloped timing recovery methods that outperform the conventional PLL-based ones.

However, we have implicitly assumed knowledge of when the actual data transmission

started. Usually, this knowledge is obtained during the acquisition phase. This is in

contrast to the tracking phase, where the knowledge from the acquisition phase is

fine-tuned and timing variations are tracked. Acquisition can be thought of as being

part of the tracking problem with the initial offset now being a large offset and the

frequency offset too being unknown. It is profitable, however, to separate the task of

timing recovery into two phases. During the first phase, we use trained data to get

a coarse estimate of the initial offset and the frequency offset and during the second

phase, we fine-tune these estimates and track timing variations like the random walk.

During this second phase, we do not have training. The advantage with this approach

is reduced complexity of the estimator since it is easier and less complex to design

tracking algorithms that estimate smaller timing offsets. The acquisition phase gets a

coarse estimate fast, though with not too much accuracy, and the tracking algorithms

can fine-tune these estimates.

In this chapter, we study a common method of acquisition which is based on the

use of a preamble sequence. Conventionally, the preamble sequence is placed at the

start of the packet. We add an additional degree of freedom to the acquisition problem

by assuming that the position of the preamble need not be fixed and show that, to

minimize the CRB on frequency offset estimation, we need to split the available known

symbols into two halves and place them one each at the beginning and at the end of

109

the packet. For some specific cases, we show that this placement also minimizes the

CRB when we perform joint acquisition and tracking. An added advantage of this

placement strategy is that it greatly reduces the occurrence of cycle slips in the case

when the frequency offset is the dominant timing offset.

The rest of the chapter is organized as follows. In Section 6.1, we present a brief

description of previous work related to preamble placement optimization, which was

with reference to channel estimation as opposed to timing recovery. In Section 6.2, we

review the conventional timing acquisition method. Next, in Section 6.3, we present

the linear observation model that is used to derive the CRB and also to arrive at the

optimal preamble placement strategy. In Section 6.4, we evaluate the performance

of the placement strategy derived in the previous section for the actual non-linear

system with the PR-IV channel model, and observe that the CRB-achieving preamble

placement strategy is the same. In Section 6.5, we simulate the PLL-based system

with the CRB-achieving placement strategy and observe a reduction in the frequency

of cycle slips. In Section 6.6, we consider joint acquisition and tracking. Finally, we

summarize the results and observations in Section 6.7.

6.1 History: Preamble Placement for Channel

Estimation

The problem of optimal preamble placement has been considered in literature with

respect to channel estimation [1] [49] [20] [36] [10]. Different optimization criteria

considered are the mean squared channel estimation error and the channel i.i.d. ca-

pacity.

The channels considered are finite impulse response fading channels, and the op-

timal training strategy consists of arranging the known symbols is small contiguous

clusters placed periodically in the data stream [1] [49]. These preamble clusters are

chosen to be as equal as possible, subject to the power constraint on training, and also

110

to number of taps of the channel impulse response. In [20], it is shown that superim-

posed training outperforms the time-division approach to training. In other words,

it is shown that, for a given fraction of the transmit power allocated to training, it

is beneficial to have a training signal component superimposed on the data signal, as

opposed to inserting training symbols between data symbols. In [36], channels that

are both time and frequency selective are considered. It is shown that to minimize

the mean squared channel estimation error, the optimal training strategy is to use

equi-spaced and equi-powered pilot symbols.

In [10], multiple access communication systems undergoing fading are considered.

To minimize the influence of asynchronous interference on the packets of one user

from those of other users, it is shown that the best placement strategy is to use two

clusters of equal or quasi-equal size at the ends of the packet.

In this chapter, we consider the problem of optimal preamble placement to mini-

mize the Cramér-Rao bound on the timing estimation error variance. This is similar

to minimum mean-squared error approach considered in the channel estimation case.

First, we begin by giving a description of the conventional acquisition method.

6.2 Conventional Acquisition

In a conventional setting, a certain number of known symbols are placed at the start

of each packet to aid acquisition. At the receiver, the incoming waveform is correlated

with the waveform generated based on the known data and the channel model, and

peak detection is used to detect the start of transmission. The symbols chosen for this

section of the preamble have to be such that we get very high correlation when the

waveforms match and the correlation should die down rapidly as the waveforms get

mismatched. The goal of this phase of acquisition is to get to within [−0.5T , 0.5T) of

the actual start of transmission, where T is the symbol duration. Depending on the

channel and the noise conditions, we can do better than just get in the [−0.5T , 0.5T)

111

range and, often, the residual timing error can be effectively modeled as a zero-mean

Gaussian random variable. A popular method for this phase of acquisition is the

zero-phase start (ZPS) method [56].

The next portion of the preamble is often a periodic pattern that helps in acquiring

the frequency offset. The periodic tone is spectrally compact and therefore, passes

through the channel without distortion and can be detected easily at the receiver.

A common method is to use a trained PLL at the receiver. The trained PLL will

operate satisfactorily whenever the remaining offset it faces is small. The PLL gain

is set reasonably high to allow for fast frequency acquisition. High gain increases

the frequency range over which we can lock in and also reduces the overhead by

reducing the required length of the preamble. At the end of this phase of acquisition,

the residual frequency offset can also be modeled as a zero-mean Gaussian random

variable.

6.3 Linear Model: Optimal Preamble Placement

As described in the earlier section, in the conventional acquisition set-up, all the

known symbols are placed at the start of the packet. In this section, we relax this

constraint and allow the placement of the known symbols to be an additional degree

of freedom and study the improvements to be gained as a result of this relaxation. As

before, during acquisition, we are interested in estimating only the initial timing offset

and the frequency offset. We start with the linear measurement model developed in

Chapter 5 where we added the outputs of the TED and the PLL to arrive at the

observations yk. We concentrate our attention on the second phase of acquisition

where we operate the trained PLL to acquire the frequency. We analyze acquisition

performance for the linearized system as a function of the preamble position and

arrive at the optimal placement that minimizes the timing estimation error variance.

112

The linear model is given by

y = τ + ν, (193)

where

y = [y0 y1 . . . yK−1]T ,

τ = [τ0 τ1 . . . τK−1]T ,

ν = [ν0 ν1 . . . νK−1]T . (194)

The noise variables {νk} are i.i.d. zero-mean normal random variables of variance

σ2
n. We assume that K out of the N data symbols are known. Therefore, for this

model, we haveK observations out of the total allowedN , and this is done by selecting

only the observations corresponding to the acquisition slots.

The timing offsets τk themselves are from the following linear model.

τk = τ0 + xk∆T, (195)

where xk is the position of the kth acquisition symbol, chosen from 0 to N − 1.

Therefore, the problem of choosing the preamble placement strategy is the same as

choosing the set {xk}K−1
0 .

6.3.1 Least Squares Estimation

The least squares estimator for the parameters ∆T and τ0 is given by

∆̂T =
K
∑
xmym −

∑
xm

∑
ym

K
∑
x2
m − (

∑
xm)2

,

τ̂0 =
1

K

∑
(ym − xm∆̂T). (196)

For i.i.d observations {yk}, this estimator is efficient, i.e., it achieves the Cramér-

Rao bound and the estimation error variances are

V∆T =
σ2
nK

K
∑
x2
m − (

∑
xm)2

,

Vτ0 =
σ2
n

∑
x2
m

K
∑
x2
m − (

∑
xm)2

, (197)

113

where σ2
n is the variance of each noise variable νk. These expressions can be rewritten

as

V∆T =
σ2
n

K

1
1
K

∑
x2
m − (1

K

∑
xm)2

=
σ2
n

K

1

var(I)
,

Vτ0 =
σ2
n

K

1
K

∑
x2
m

1
K

∑
x2
m − (1

K

∑
xm)2

=
σ2
n

K

(
1 +

mean(I)2

var(I)

)
, (198)

where I is the vector of acquisition indices {xk}. In addition, we have defined the

mean and variance of any given vector S = [s0, s1, · · · , sK−1] to be mean(S) = 1
K

∑
sk

and var(S) = 1
K

∑
s2
k −

(
1
K

∑
sk
)2

. The problem of choosing the best preamble

locations, therefore, is the same as choosing the set I = {xk}K−1
0 .

First, we arrive at the optimal indices to minimize V∆T for fixed K and σ2
n, which is

the same as choosing the vector I, the elements of which have the maximum variance.

6.3.2 Choosing the optimal I

Theorem: Let K be an even natural number. Let I = [i0, i1, · · · , iK−1] be any vector

of integers satisfying

0 ≤ i0 < i1 < · · · < iK−1 ≤ (N − 1) (199)

and let Io be given by

Io = [0, 1, · · · , K
2
− 1, N − K

2
, · · · , N − 2, N − 1]. (200)

Then

var(Io) ≥ var(I), (201)

where we have equality iff I = Io.

Proof: Let Io = [io0, io1, · · · , io(K−1)], i.e.

iok = k, 0 ≤ k ≤ K

2
− 1,

= (N −K) + k,
K

2
≤ k ≤ K − 1. (202)

114

The mean of all the elements of Io is µo = N−1
2

. The variance of a vector does not

change if we shift all the elements by the same amount, and therefore, we now deal

with two new vectors I1 and I1
o formed by shifting I and Io to the left by µo. In

symbols,

I1 = [x0, x1, · · · , xK−1],

I1
o = [xo0, xo1, · · · , xo(K−1)],

xk = ik − µo,

xok = iok − µo. (203)

In addition, we can write

I1 = I1
o + ε, (204)

where ε = [ε0, ε1, · · · , εK−1] and εi = xi − xoi. The set ε satisfies the following

constraints.

0 ≤ ε0 ≤ ε1 ≤ · · · ≤ εK
2
−1 ≤ (N −K)

−(N −K) ≤ εK
2
≤ εK

2
+1 ≤ · · · ≤ εK−1 ≤ 0

εK
2
−1 − εK

2
≤ (N −K). (205)

0 – µo
K
2
---- 1– µo– N – 1 – µoN

K
2
----– µo–

xoi xi

0

Figure 43: The various constraints of ε.

Figure 43 explains the constraints on ε. The elements of I1
o are marked along the

real line. The left-half elements are all negative and the only perturbations allowed are

positive. The perturbations {εi}
K
2
−1

0 form an increasing sequence with the maximum

being N −K, which happens when iK
2
−1 = N − K

2
− 1. Similarly, we get the second

restriction from the right-half. The third restriction arises from the fact that there are

115

N slots and K distinct, ordered elements, and therefore, no two consecutive elements

can be separated by more than N −K.

The variances under consideration, var(Io) and var(I), can now be rewritten as

var(Io) =
1

K

∑
x2
ok,

var(I) =
1

K

∑
x2
k −

(
1

K

∑
εk

)2

. (206)

Next, consider the left half, i.e., 0 ≤ k ≤ K
2
− 1. The intuition for the following

steps is as follows. For the left half, all the xoks are negative and positive εks will

ensure that |xk| < |xok| if we make sure that for all possible εks, xk does not exceed

−xok. From (202), (203), and (205),

0 ≤ εk ≤ N −K, (207)

=⇒ xok ≤ xok + εk ≤ N −K + xok, (208)

=⇒ iok − µo ≤ xk ≤ iok − µo +N −K, (209)

=⇒ |xk| ≤ max(|iok − µo|, |iok − µo +N −K|), (210)

=⇒ |xk| ≤ max(
N − 1

2
− k,N −K +

N − 1

2
+ k), (211)

=⇒ |xk| ≤
N − 1

2
− k, (212)

=⇒ |xk| ≤ |xok|. (213)

The equality condition is satisfied iff εk = 0 since N−1
2
− k > N −K + N−1

2
+ k for

the left half. By proceeding similarly, we can show that the same holds for the right

half. Combining, we get

|xk| ≤ |xok| for 0 ≤ k ≤ (K − 1), (214)

with equality iff xk = xok for all k.

Combining (206), (214) and the fact that
(

1
K

∑
εk
)2
≥ 0 with equality iff ε = 0,

we get the desired result, i.e.,

var(Io) ≥ var(I), (215)

116

where we have equality iff I = Io.

Symbol index

T
im

in
g

of
fs

et

Symbol index

T
im

in
g

of
fs

et

Conventional
preamble locations

Proposed
preamble locations

Figure 44: Proposed preamble placement strategy.

Therefore, to minimize V∆T , we need to split the available preamble slots into two

equal halves and place these halves, one at the beginning and one at the end of the

packet, as shown in Figure 44.

6.3.3 Dealing with Vτ0

Recall that

Vτ0 =
σ2
n

K

(
1 +

mean(I)2

var(I)

)
. (216)

Therefore, the optimal arrangement in this case (I ′) is

I ′ =
argmax

I

var(I)

mean(I)2
. (217)

This can be split into two steps: first, we find the optimal arrangement for each

possible value of the mean and then find the optimum over all mean values, i.e.,

I ′ =
argmax

Ik

var(Ik)

mean(Ik)2
, where Ik =

argmax

I,mean(I) = k
var(I). (218)

The solution of this problem leads to the following arrangement. We place K1

known symbols at the start and K −K1 at the end of the packet where

K1 =

⌈
K

(
1− (3N −K)K

6N2

)⌉
. (219)

For N >> K, we see that K1 ≈ K, which means we need to place almost all the

known symbols at the start of the packet to do the best estimation of τ0. The optimal

117

arrangement for estimating ∆T performs worse by a factor of approximately 2 as far

as the estimation error variance for τ0 goes. One interpretation of this is that the

known symbols at the end of the packet do not contribute at all to the estimation

of the initial offset τ0, and the error variance is roughly equivalent to what we would

get if we had only K/2 known symbols, all at the beginning.

One way to work around this mismatch of the optimal solutions is to redefine the

indices so that the mean for the optimal solution for estimating ∆T is zero, i.e., shift

all indices to the left by N−1
2

as done in the proof. From (216), we see that having

a zero mean is the best possible solution given K symbols. Therefore, the optimal

scheme for estimating ∆T performs optimally for τ0 too. The difference being, in

this case, we estimate the timing offset at the center of the packet instead of at one

end. Assuming that we are going to use ∆̂T and τ̂0 to compute the expected timing

offsets for the remaining positions, this arrangement makes intuitive sense as this

minimizes the maximum distance over which we need to interpolate, thus minimizing

the maximum absolute value of the interpolation error.

6.3.4 Performance Evaluation of the Optimal Placement

In the previous section, it was proved that the optimal preamble placement was the

one where we place half the known symbols at the start of the packet and half at the

end. We compare three schemes for performance with respect to estimating ∆T :

• all the known symbols at the start of the packet (I1) with error variance V1;

• the optimal arrangement (I2) with V2;

• sprinkle the known symbols uniformly throughout the packet (I3) with V3.

The error variance of the least squares estimator for these three schemes can be

evaluated using (198), and they are

C1 =
V1

σ2
n

=
12

K(K2 − 1)
,

118

C2 =
V2

σ2
n

=
1

K(K2−1)
12

+ KN(N−K)
4

,

C3 =
V3

σ2
n

=
(K − 1)2

(N − 1)2

V1

σ2
, (220)

where we consider the normalized error variance coefficient C defined as the estimation

error variance divided by the observation noise variance.

0 1000 2000 3000 4000
10–10

10–9

10–8

10–7

10–6

10–5

Number of known symbols

N
or

m
al

iz
ed

 e
rr

or
 v

ar
ia

nc
e

co
ef

fic
ie

nt
 (

C
)

Conventional

Uniform

Optimal

Figure 45: Optimal arrangement much better than conventional one.

Figure 45 compares the performance of the three acquisition schemes for N =

4000, and K ranging from 1 to 4000. The optimal arrangement significantly outper-

forms the conventional one, and the uniform sprinkling scheme is not much worse off.

As an example, we compare the total number of symbols needed to get the normal-

ized error variance coefficient C = 2 × 10−9. The optimal scheme needs 86 symbols,

the uniform scheme needs 248 symbols, whereas the conventional scheme needs 1588

symbols of the 4000 to be known!

119

6.4 Actual System: Optimal Preamble Placement

In the previous section, we considered the linearized system and arrived at the best

preamble placement strategy for this system. This linear system inherently assumes

that we have a PLL operating on the received waveform, where we add the outputs

of the TED and the PLL to arrive at the linear measurements. In this section, we use

the CRB to show that the result developed in Section 6.3 for the optimal preamble

placement applies to the general non-linear problem as well.

Consider once again the general system model:

r(t) =
N−1∑
l=0

alh(t− lT − τl) + n1(t), (221)

where T is the bit period, al ∈ {±1} are the N i.i.d. data symbols, h(t) is the channel

impulse response, n1(t) is additive Gaussian noise band-limited to [− 1
2T
, 1

2T
), and τl

is the unknown timing offset for the lth symbol. During acquisition, we are interested

only in the initial timing offset and the frequency offset, and therefore, the timing

model is τk = τ0 +k∆T . With h(t) band-limited such that uniform baud-rate samples

are sufficient statistics to reconstruct r(t), we only store uniform samples rk given by

rk =
N−1∑
l=0

alh(kT − lT − τ0 − l∆T) + nk, (222)

where {nk} are i.i.d. zero-mean Gaussian random variables of variance σ2. During

acquisition, only K of the N data symbols are known at the receiver and only the

observations corresponding to these K positions are used. Assuming that the known

symbols can be arbitrarily inserted in the N positions, the CRB on estimating the

timing parameters is given by

V∆T =
σ2

KEh′

1
1
K

∑
x2
m − (1

K

∑
xm)2

=
σ2

KEh′

1

var(I)
,

Vτ0 =
σ2

KEh′

1
K

∑
x2
m

1
K

∑
x2
m − (1

K

∑
xm)2

=
σ2

KEh′

(
1 +

mean(I)2

var(I)

)
, (223)

where I is the vector of acquisition indices {xk} and Eh′ is the energy in the derivative

of the channel impulse response h(t). This has the same structure as that with the

120

linear model after the operation of the PLL. Therefore, for the actual non-linear

system, the optimal preamble placement to minimize the CRB is the same one, where

we split the available known symbols into two halves and place them at the beginning

and at the end of the packet. For the frequency offset model, the CRB can be achieved

using the Levenberg-Marquardt method (Chapter 3) and therefore, the arrangement

that minimizes the CRB indeed gives the best performance. In summary, whether we

use the PLL or a CRB-achieving timing recovery scheme, the best preamble placement

strategy is the same.

6.5 Cycle Slips

An added advantage with the optimal scheme is that it is well equipped to handle

cycle-slips. We can use independent estimators at the beginning and at the end of the

packet to locate the start and the end preamble sequences, thus reducing the effects

of cycle slips in the tracking mode in between.

We present simulation results for the following simple acquisition strategy. The

known symbols are placed half at the beginning and half at the end of the packet. Let

the two preamble sequences be denoted by S1 (beginning) and S2 (end) respectively.

At the receiver, we perform correlation detection and run a trained PLL, trained to

the sequence S1. At the end of the first preamble sequence, the PLL is switched

to the decision-directed mode and operated in that mode till the end of the packet.

Next, out of the N decisions available, we pick the last K/2 and correlate these with

the K/2 symbols corresponding to S2 for different shifts and perform peak detection.

This helps in detecting cycle slips. This knowledge is then used to suitably correct

the timing estimates τ̂k corresponding to the location of S2 in the received sequence.

Figure 46 shows the improvement due to the aforementioned acquisition scheme

when compared to the conventional scheme where all the known symbols are placed at

the beginning of the packet. We consider the uncoded PR-IV system with N = 5000

121

2.5 3 3.5 4 4.5 5 5.5 6
10–5

10–4

10–3

10–2

10–1

100

SNR (dB)

F
re

qu
en

cy
 o

f C
yc

le
 S

lip
s

Optimal

Conventional

Figure 46: Splitting the preamble reduces the occurrence of cycle slips.

being the packet size. 120 of these symbols are known at the receiver. For the

conventional system, we use the length-120 periodic version of the 1100 pattern. For

the proposed scheme, we have a length-60 sequence formed by repetitions of the 1100

pattern for the preamble sequence at the start of the packet. This periodic pattern

helps in rapid acquisition of the frequency offset. For the known sequence at the end

of the packet, we choose a random length-60 sequence. This is to get good correlation

performance. The PLL gain parameters are α = 0.04 and β = α2/4, chosen to

minimize the number of cycle slips for the conventional system at an SNR of 5 dB.

For the optimal arrangement, the number of cycle slips that were not detected and/or

corrected is plotted. The acquisition scheme described above reduced the number of

residual cycle slips by a factor of 10 to 100 depending on the SNR. In terms of SNR,

at a cycle slip rate of 10−3, we observe an improvement of around 1.5 dB.

We also simulated the system where all the data symbols were known at the

receiver, i.e., the trained system. The trained system did not exhibit any cycle slips

for the range of SNRs considered when the PLL-based system was used for timing

122

recovery. Again, this leads us to the conclusion that one way to improve the timing

recovery performance is to improve the quality of the decisions available to the timing

recovery block.

6.6 Joint Acquisition and Tracking

So far we have considered the tracking and acquisition problems in isolation. Here we

consider a simple version of the problem of joint acquisition and tracking. We ignore

the presence of the random walk, and assume that the timing offset model consists

only of an initial timing offset τ0 and a frequency offset parameter ∆T .

When we considered a system where we performed only acquisition, we assumed

the following linear observation model.

y = τ + ν, (224)

where y = [y0 y1 . . . yK−1]T , τ = [τ0 τ1 . . . τK−1]T , and ν = [ν0 ν1 . . . νK−1]T . The

noise variables {νk} were assumed to be i.i.d. zero-mean normal random variables

of variance σ2
n. In this section, we postulate the existence of a timing recovery block

that takes advantage of the K known symbols in the training phase, leading to a mea-

surement noise variance σ2
a for the observations corresponding to the known symbols

(acquisition), and σ2
t for the observations corresponding to the data symbols (track-

ing) such that σ2
a < σ2

t . An example is the PLL-based timing recovery system, where

the timing estimation error variance is lesser with training than otherwise. Though

the timing estimation error variance as a function of the bit position does not show

the step-function type behavior assumed here, but rather varies in a gradual fashion,

we use this model as a close approximation.

Let the parameter to be estimated be θ = [∆T τ0]T , and let x(θ) be the noiseless

observation. For the linear model of (224), the kth component of x(θ) is just xk =

τk = k∆T + τ0. The noise variables are not i.i.d. Therefore, to evaluate the Fisher

123

information matrix, we use (46), which is reproduced here:

J θ = GTR−1G, (225)

where G is the sensitivity matrix

G =

[
∂

∂θ
xT (θ)

]
= [g0 g1 . . . gP−1], (226)

P is the size of the parameter vector θ and the N × 1 column vector gi = ∂x(θ)
∂θi

denotes the variation in the mean x(θ) with respect to θi, the ith element of θ. The

CRB is given by the inverse of the Fisher information matrix. Applying this to our

model, we get

J θ =

 1
σ2
a

∑
k∈Ia k

2 + 1
σ2
t

∑
k∈I t k

2 1
σ2
a

∑
k∈Ia k + 1

σ2
t

∑
k∈I t k

1
σ2
a

∑
k∈Ia k + 1

σ2
t

∑
k∈I t k

1
σ2
a
K + 1

σ2
t
(N −K)

 , (227)

where the ordered vectors Ia and I t contain the indices corresponding to the training

and the data symbols respectively. The elements of Ia and I t span all the integers

from 0 to N − 1. Let ma and mt be the mean of Ia and I t respectively, and let their

respective variances be Va and Vt. The determinant of J θ can be written as

|J θ| =
{
K

σ2
a

+
N −K
σ2
t

}{
K

σ2
a

Va +
N −K
σ2
t

Vt

}
+
K

σ2
a

N −K
σ2
t

(ma −mt)
2. (228)

This determinant can be thought of as a weighted variance of all possible indices,

with the weights being 1/σ2
a or 1/σ2

t depending on whether the indices belong to the

acquisition or the tracking sets. The CRB then evaluates to

V∆T =
1

|J θ|

[
K

σ2
a

+
N −K
σ2
t

]
,

Vτ0 =
1

|J θ|

[
K

σ2
a

(Va +m2
a) +

N −K
σ2
t

(Vt +m2
t)

]
. (229)

When performing acquisition alone, to minimize V∆T , we needed to maximize the

variance of the set of acquisition indices. To minimize V∆T with joint acquisition and

tracking, from (229), we see that we need to pick the acquisition indices to maximize

124

the determinant |J θ|. As before, we shift the indices so that their possible indices are

of the form i−(N−1)/2 for i = 0 to N−1, and these are apportioned into the vectors

I ′a and I ′t with mean and variance being m′a, V
′
a and m′t, V

′
t respectively. Shifting by

a constant does not change the variance, and therefore, V ′a = Va and V ′t = Vt. Also,

we get m′a −m′t = ma −mt. So, from (228), we see that this shift does not affect the

evaluation of the determinant.

Now, consider the optimal arrangement of Section 6.3.2, where the acquisition

positions are chosen assuming we perform acquisition alone. Let this be set of acqui-

sition indices when we perform acquisition and tracking jointly. Therefore,

Ioa = [0, 1, · · · , K
2
− 1, N − K

2
, · · · , N − 2, N − 1]. (230)

For this set-up, the means of the shifted vectors m′a and m′t are zero and the deter-

minant can be rewritten as

|J θ|o =

{
K

σ2
a

+
N −K
σ2
t

} 1

σ2
a

∑
k∈I ′

o

a

k2 +
1

σ2
t

∑
k∈I ′

o

t

k2

 ,

=

{
K

σ2
a

+
N −K
σ2
t

} 1

σ2
t

∑
k∈I ′

k2 +

(
1

σ2
a

− 1

σ2
t

) ∑
k∈I ′

o

a

k2

 ,

= C1

C2 + C3

∑
k∈I ′

o

a

k2

 , (231)

where I ′ is the ordered vector containing all shifted indices i − (N − 1)/2 for i = 0

to i = N − 1, which is a constant, independent of the choice of Ia. The definition of

the constants C1, C2 and C3 follow from equations above. |J θ|o is a function of only

the variance of I ′
o
a.

For an arbitrary choice Ia, the determinant evaluates to

|J θ| = C1

C2 + C3

∑
k∈I ′a

k2

− C2
3

 ∑
k∈I ′a

k

2

. (232)

It was shown in Section 6.3.2 that the choice Ia = Ioa maximizes the term∑
k∈I ′a k

2. In addition,
∑
k∈I ′

o

a
k = 0. Therefore, the choice Ia = Ioa maximizes

125

|J θ|, leading to a maximum |J θ| = |J θ|o. We considered only V∆T here. As with the

acquisition case, it can also be shown that the same arrangement also minimizes Vτ0 ,

with the caveat that now we estimate the intercept value at the center of the packet

as opposed to the value at the start of the packet. In summary, for the system model

considered here, the choice that minimizes the CRB for acquisition alone minimizes

the CRB for the joint acquisition and tracking case as well.

6.7 Summary

In this chapter, we studied the problem of acquisition, where the goals are to accu-

rately estimate the initial phase offset and the frequency offset so that the tracking

mechanism functions properly. The conventional acquisition method is to place known

symbols at the start of the packet and use these to operate the PLL-based tracking

system in the trained mode. If all the known symbols can be placed arbitrarily

throughout the packet, we show that to minimize the CRB on the timing estimation

error with a frequency offset model, we need to place the known symbols half at the

beginning of the packet and half at the end. This arrangement also reduces the oc-

currence of cycle slips greatly. In addition, in the absence of a random walk during

the tracking mode, we showed that the same arrangement also minimizes the CRB

for joint acquisition and tracking.

126

CHAPTER 7

ITERATIVE TIMING RECOVERY

In Chapters 3 to 6, we studied timing recovery methods for the uncoded system, and

in Chapter 2, we described the coded system. In this chapter, we propose iterative

timing recovery for the coded system and present simulation results to demonstrate

its performance.

In a conventional receiver, timing recovery is performed assuming an uncoded

system. This approach works well because the SNR of operation is high enough that

the conventional PLL-based timing recovery methods work well enough. The samples

generated based on the timing recovery block’s estimates are then processed by the

equalizer and the decoder to get the final decisions.

With the advent of iteratively decodable codes [9] [25], the SNR of operation could

be lowered significantly. Lower SNR reduces the cost of operations, and in magnetic

recording systems, allows for higher data densities, and therefore, is a very desirable

property. In addition, turbo equalization [54] allowed for the use of simpler ECCs

and led to a further reduction in the operating SNRs. In this low SNR regime, the

conventional PLL-based timing recovery schemes are tested severely.

The optimal solution requires the joint estimation of the timing recovery offsets

and the data bits. In effect, we need to perform the tasks of timing recovery, equal-

ization and ECC decoding jointly. Such joint detection may be performed using the

expectation-maximization (EM) algorithm [19] [6]. However, a solution based on the

EM algorithm [26] turns out to be computationally prohibitive.

We propose iterative timing recovery as an alternative to the conventional ap-

proach that separates timing recovery and turbo equalization. Soft information from

127

the turbo equalizer iterations is fed back to the timing recovery block which uses this

information to refine the samples being fed to the turbo equalizer for further itera-

tions. Thus, as iterations progress, the performance of both the timing recovery block

and the turbo equalizer improves. With the PLL-based system as the timing recovery

block, we observe significant reduction in the SNR required at the expense of a small

increase in complexity. Using sophisticated timing recovery algorithms instead of the

PLL-based one leads to marginal improvements, supporting the conjecture that, in

an iterative setting, it is the process of iterations itself that buys us the improvements

as opposed to optimizing the individual components.

Next, we consider the effect of the optimal acquisition strategy developed in Chap-

ter 6. Using this reduces the occurrence of cycle slips greatly and this, in turn, reduces

the complexity and improves the performance of the system. Finally, we compare the

complexity of the different timing recovery methods considered here.

The rest of this chapter is organized as follows. In Section 7.1, we briefly summa-

rize the conventional system that separates timing recovery and turbo equalization.

In Section 7.2, we present simulation results for two systems, and motivate the itera-

tive timing recovery algorithm. In Section 7.3, we propose iterative timing recovery.

This method is simulated for a variety of systems and analyzed in Section 7.4. Finally,

the results and observations are summarized in Section 7.5.

7.1 Conventional System

In a conventional receiver, the continuous-time received waveform is first sampled

using the PLL-based timing recovery architecture described in Chapter 4. Then, the

samples are acted on by the turbo equalizer described in Chapter 2 to produce the

receiver’s estimates of the transmitted message bits.

We consider two types of error control codes (ECCs) in this chapter: convolutional

codes and LDPC codes. The block diagrams corresponding to these two cases are

128

(BCJR)
EQUALIZER

a priori

(BCJR)
DECODER

a priori

π

π−1 +

+

rk

λ1e,k

λ2e,k

–

–

λ2,k

0

+
kT + τ̂k

TEDPLL

Conv.
Encoder π τ h(t)

n(t)

f(t) rk

τ̂k

d̂k

Front-end
Filter

Transmitter Channel Receiver (Timing Recovery)

msg

Receiver (Turbo Equalizer)

Figure 47: Block diagram of a conventional convolutional coded system.

slightly different. The system block diagram for the case with the convolutional code

as the ECC is shown in Figure 47. In the case of LDPC codes, the interleaver after

the ECC and before the channel is redundant since LDPC codes are random codes.

The action of the interleaver is equivalent to relabeling the bit nodes of the graph,

and this does not affect the properties or the performance of the code. The block

diagram in the case of the LDPC code as the ECC is shown in Figure 48.

7.2 Motivation for Iterative Timing Recovery

The conventional method of separating timing recovery and turbo equalization per-

forms poorly when faced with even moderate timing offsets. Consider first the fol-

lowing system: The outer code is a rate-1/4 convolutional encoder with generator

polynomial given by [1, 1, 1, 1⊕D
1⊕D⊕D2], which maps blocks of 1278 message bits onto

blocks of 5120 coded bits. The channel is the precoded PR-IV channel characterized

129

(BCJR)
EQUALIZER

a priori

(Msg Passing)
DECODER

a priori

+

+

rk

λ1e,k

λ2e,k

–

–

λ2,k

0

+
kT + τ̂k

TEDPLL

LDPC
Encoder τ h(t)

n(t)

f(t) rk

τ̂k

d̂k

Front-end
Filter

Transmitter Channel Receiver (Timing Recovery)

msg

Receiver (Turbo Equalizer)

Figure 48: Block diagram of a conventional LDPC coded system.

by the rate-1 generator polynomial [1−D2

1⊕D2]. The rate of this serial turbo code is low,

and consequently, the SNR of operation of the timing recovery block is low. We con-

sider a random walk timing offset with σw/T = 0.3%. This represents a moderate

random walk with low probability of cycle slips. We assume perfect acquisition. Since

we do not have a frequency offset, a first order PLL is sufficient, and the gain factor

is α = 0.025, chosen to minimize the mean squared timing estimation error at SNR

= 5 dB. The interleaver is an s-random interleaver with s = 16, and at most 50000

packets were used for each SNR. The bit-error rate (BER) vs. SNR curves for this

system are shown in Figure 49. Also plotted are the performance curves with known

timing and for the genie-aided system. For the known timing system, the timing

offsets are all known at the receiver, and we sample at the right sampling instants.

In the case of the genie-aided system, the timing recovery block has access to the

transmitted symbols, and therefore, operates in the trained mode. Both these give

130

1 2 3 4 5 6 7
10–5

10–4

10–3

10–2

10–1

SNR, Eb/N0 (dB)

B
E

R

K
N

O
W

N
 T

IM
IN

G

Iteration 1
Iteration 10

 Iteration 25

Genie
Aided

Figure 49: The rate-1/4 convolutional coded system is more than 4.5 dB away from
known timing.

lower bounds to the performance of the conventional system. After 25 iterations of

the turbo equalizer, the conventional scheme is more than 4.5 dB away from known

timing at BER = 10−4, and the genie-aided system is less than 0.2 dB away from the

known timing case. The loss of performance for the conventional system is largely

due to the unreliability of the decisions fed to the timing recovery device, and with

right decisions, i.e., in the genie-aided case, the loss is less than 0.2 dB.

The next example is a coded system with a high-rate LDPC outer code. Specif-

ically, we consider a rate-8/9 (3, 27)-regular LDPC code of coded block length 4095.

The parity-check matrix for this code has 3 ones in each column and 27 ones in

each row. We again assume the precoded PR-IV channel characterized by the rate-1

generator polynomial [1−D2

1⊕D2]. The timing offset is a pure frequency offset with the pa-

rameter ∆T = 0.2% and perfect acquisition implying τ0 = 0. We use a second order

PLL to track the frequency offset with the gain parameters being α = 0.04, chosen

to minimize the timing estimation error variance at SNR = 5 dB, and β = α2/4. A

maximum of 3 × 106 packets were simulated. The sector-error rate (SER) for this

131

4 5 6 7 8 9
10–6

10–5

10–4

10–3

10–2

10–1

1

SNR (dB)

S
ec

to
r-

er
ro

r
R

at
e Conventional (25/5)

Genie-aided (10/5)

Perfect Timing (10/5)

Figure 50: The rate-8/9 LDPC coded system is around 4 dB away from known
timing.

system is plotted as a function of SNR in Figure 50. The notation for the iterations is

x/y where x is the total number of turbo iterations, and y is the number of message

passing iterations performed for each call of the LDPC decoder. Again, in this case,

we observe the same general conclusions. At SER = 10−5, the conventional system is

about 4 dB away from the perfect timing case, and the genie-aided system system is

less than 0.2 dB away from the perfect timing case.

DecoderEqualizer
Timing

Recovery

Conventional

Decoder

Equalizer

Timing
Recovery

Proposed

Figure 51: Comparing the conventional and the proposed receivers.

Both these examples provide strong motivation for iterative timing recovery, where

we pass the better decisions available at the end of turbo iterations back to the

132

timing recovery device, thus improving its performance. The difference between the

conventional and the proposed receivers is summarized in Figure 51. The timing

recovery block in the proposed receiver exploits the presence of the turbo equalizer,

whereas the conventional receiver does not. The proposed receiver is described in

more detail in the sequel.

7.3 Iterative Timing Recovery

Consider a coded system where the outer code is a convolutional code. Consider a

conventional receiver with PLL-based timing recovery followed by a turbo equalizer.

After the first iteration, the turbo equalizer produces soft symbol estimates {d̃k}

that would be more reliable than the tentative decisions of the memoryless soft slicer

used by the PLL. If we were to run the front-end PLL again using the original read-

back waveform but using the soft decisions from the turbo equalizer, we would get

an improved set of timing estimates {τ̂newk }. Rather than store the continuous-time

readback waveform in its entirety, we would only need to store the original set of sam-

ples, since the band-limited nature of r(t) makes them sufficient statistics. Thus, the

second pass of the PLL could arrive at new samples {rnewk } through an interpolation

of {rk}, according to:

rnewk =
∑

l
rlp(kT − lT + τ̂newk − τ̂l), (233)

where p(t) = sinπt/T
πt/T

.

We now describe the proposed receiver, which is shown in Figure 52. It begins as

described above for the first iteration, with a real-time PLL feeding samples {rk} to

a turbo equalizer, which feeds soft estimates {d̃k} to a second PLL which produces

improved timing estimates {τ̂newk }. The read-back waveform is then effectively resam-

pled at the improved sampling instants using interpolation of the original samples as

described in (233). These new samples are then used in the second iteration of the

turbo equalizer. The process then repeats: after each iteration of the turbo equalizer,

133

BCJR

INTERPOLATE

PR trellis

TED

–
+

–+

apriori

final
decisions

TED

r(t)

kT τ̂k+

r k

r k
new

τ̂k
new

d̃k

λk

FEC
DECODER

π –1

π

PLL

PLL

λk
a

Figure 52: Joint timing recovery and turbo equalization.

soft estimates from the turbo equalizer are used to improve the timing estimates,

which are then used to interpolate the original samples before going on to the next

turbo iteration.

The proposed receiver of Figure 52 is essentially a modified turbo equalizer, with

an interpolation step inserted between consecutive iterations. The complexity increase

is marginal, because the complexity of interpolation is usually negligible relative to

each turbo iteration. It is worth noting that although we perform timing recovery

and turbo equalization jointly, the front-end has remained unchanged, and we still

sample the continuous time waveform only once. The modified turbo equalizer is able

to correct for poor timing at the front-end PLL.

The block diagram of Figure 52 is for a convolutional outer code. With an LDPC

outer code, the block diagram is the same except for the interleaver and the deinter-

leaver.

134

7.4 Simulation Results

In this section, we present simulation results to demonstrate the performance of iter-

ative timing recovery with a variety of channel codes and also with different timing

offset models. Specifically, we consider the following cases:

◦ Convolutional outer code:

• Rate-1/4 code with random walk and PR channel,

• Rate-8/9 code with random walk and PR channel,

◦ LDPC outer code:

• Rate-1/2 irregular code with constant timing offset and AWGN channel,

• Rate-8/9 irregular code with random walk and PR channel,

• Rate-8/9 regular LDPC code with frequency offset and PR channel.

7.4.1 Low Rate Convolutional Code + Moderate Random Walk

1 2 3 4 5 6 7
10–5

10–4

10–3

10–2

10–1

SNR, Eb/N0 (dB)

B
E

R

K
N

O
W

N
 T

IM
IN

G

25

Iteration 10

Iteration 1
(Conventional, Iteration 10)

(25)

Genie
Aided

Figure 53: Rate-1/4 convolutional code, random walk, PR channel.

We consider the system whose results with a conventional receiver are shown

in Figure 49. The outer code is a rate-1/4 convolutional encoder with generator

135

polynomial given by [1, 1, 1, 1⊕D
1⊕D⊕D2], which maps blocks of 1278 message bits onto

blocks of 5120 coded bits. The channel is the precoded PR-IV channel characterized

by the rate-1 generator polynomial [1−D2

1⊕D2]. We consider a random walk timing offset

with σw/T = 0.3%, and perfect acquisition. The first-order PLL gain factor is α =

0.025, chosen to minimize the mean squared timing estimation error at SNR = 5 dB.

The interleaver is an s-random interleaver with s = 16, and at most 50000 packets

were used for each SNR.

One minor complication with the precoded PR-IV system is that the second PLL

requires soft estimates of the precoder output {d̃k}, but a conventional turbo equalizer

for the precoded PR-IV channel produces LLRs {λk} for the precoder input {bk}.

Fortunately it is a simple matter to augment the SISO equalizer so that it produces

both {d̃k} and {λk}. Specifically, the BCJR can track LLRs {λ′k} for {ak}, and use

d̃k = −2ãk−2/(1 + e−λk), (234)

where ãk = tanh(λ
′
k/2).

The bit-error rate (BER) vs. SNR curves for this configuration is shown in Fig-

ure 53. At BER = 2× 10−5 and after 25 iterations, we observe a performance gain of

4.7 dB over a conventional system with separate timing recovery and turbo equaliza-

tion. The performance of the proposed system is 0.2 dB from a turbo equalizer with

perfect timing (τ̂k = τk).

7.4.2 High Rate Convolutional Code + Severe Random Walk

Next, we consider a rate-8/9 system in which blocks of 3636 bits are encoded by the

rate-1/2 generator [1, 1⊕D⊕D3⊕D4

1⊕D⊕D4], and then punctured to a block length of 4095 bits

by retaining only every eighth parity bit. As before, the channel is precoded PR-IV

and we assume additive white Gaussian noise. To test the performance in the face of

cycle slips, we increase the severity of the random walk jitter to σw/T = 0.7%, which

was found to increase the occurrence of cycle slips.

136

0 2050 4100
–0.6T

–0.4T

–0.2T

0

0.2T

0.4T

0.6T

0.8T

T

1.2T

Time (in bit periods)

T
im

in
g

E
st

im
at

e Actual τ

0

15

30
45

60
75

90

105

110

Figure 54: Iterative timing recovery corrects cycle slips automatically.

A benefit of the proposed receiver is that it can correct cycle slips. Figure 54

shows the timing waveforms for a sample packet for the rate-8/9 system at SNR =

5.0 dB and σw/T = 0.7%. The gray curve represents the actual τ sequence, the curve

labeled 0 shows τ̂ after the first pass of the PLL, and the other curves show τ̂ after

the number of iterations indicated by the corresponding label. We see that the first-

pass PLL is not able to track the rapid increase in the actual τ sequence that occurs

after about 1000 symbols; instead, τ̂ wanders downward for a few hundred symbol

periods until it eventually converges to approximately τ −T , which represents a cycle

slip. However, by the time we reach the 15th iteration, the region where the PLL

had wandered has been corrected, so that the PLL transitions from perfect lock to a

cycle slip in a very short period of time. The resulting steep slope forms a boundary

between perfect lock and cycle slip, and this boundary moves from left to right as

iterations progress, until eventually the cycle slip is eliminated.

In practice we can reduce the number of required iterations by detecting the cycle

slip and correcting for it [30]. Although cycle-slip detection is difficult in general, it is

made easy in our iterative receiver, because a cycle slip eventually leads to an abrupt

137

change in τ̂ by ±T , as shown in Figure 54. Hence, a simple and effective detection

method is to declare a slip whenever the magnitude of δk = τ̂k − τ̂k−d exceeds a given

threshold H, for some delay d. To correct the slip, the receiver need only add ±T to

all τ̂ after the slip occurs, with the sign determined by the sign of δk.

4 4.5 5 5.5 6 6.5
10–7

10–6

10–5

10–4

10–3

10–2

10–1

SNR, Eb/N0 (dB)

B
E

R

(Conventional, Iteration 25)KN
O

W
N

 TIM
IN

G

G
enie Aided PLL

Iteration 25

50

Figure 55: Rate-8/9 convolutional code, severe random walk, PR channel.

Figure 55 shows BER vs. SNR for the proposed system with cycle-slip detection

and correction, with H = 0.75T , d = 100, s = 24, σw/T = 0.7%, α = 0.04, chosen as

for the rate-1/4 system, and a maximum of 150000 packets per SNR. At SNR = 7 dB,

the BER was 2 × 10−5 after 50 iterations for the conventional system (not shown).

Therefore, at BER = 2×10−5 after 50 iterations, the proposed receiver is 2 dB better

than a conventional receiver and 0.3 dB from a turbo equalizer with perfect timing.

The genie-aided receiver suffers a 0.2 dB penalty relative to a receiver with perfect

timing. This gap can be closed only by discarding the PLL as the basis for translating

symbol estimates to timing estimates. The proposed receiver is 0.1 dB worse than

the genie-aided receiver, a loss that can be attributed to a nonzero BER after turbo

equalization.

138

7.4.3 Low Rate Irregular LDPC Code + Constant Offset

We next shift attention to LDPC outer codes and begin with rate-1/2 irregular LDPC

code characterized by the following edge degree distribution polynomials:

λbit(x) = 0.25105x2 + 0.30938x3 + 0.00104x4 + 0.43853x10

ρcheck(x) = 0.63676x7 + 0.36324x8. (235)

We encode blocks of K = 2500 bits to get a coded block length of N = 5000. The

channel is an AWGN channel with no ISI. We have a constant timing offset τ = π/20.

α = 0.01. In effect, this is a simplified system designed to analyze the effects of the

outer code on timing recovery.

-5 0 5 10
0.2%

2%

20%

SNR (dB)

0.3%

1%

10%

3%

R
M

S
 T

im
in

g
E

rr
or

σ ε
 /

T

Trained ML, CRB

Trained PLL

PLL

ML

Ignoring ECC

Exploiting ECC

Figure 56: Rate-1/2 irregular LDPC code, constant offset, AWGN channel.

Figure 32 compares the performance of the PLL-based timing recovery, the ML

timing recovery and the CRB in the trained and the memoryless soft-decision directed

cases. In Figure 56, we show the effect of exploiting the outer code in improving

timing recovery by jointly performing timing recovery and decoding. After the water-

fall region of the LDPC code, the performance of the iterative receiver matches that

139

of the trained system for both the ML and the PLL cases. Quantitatively, exploiting

the LDPC code reduces the SNR requirement by about 3.3 dB in both the ML and

the PLL-based cases.

7.4.4 High Rate Irregular LDPC Code + Random Walk

Next, we consider the rate-8/9 irregular LDPC code characterized by the following

node degree distribution polynomials:

λbit(x) = 0.38767x2 + 0.39823x3 + 0.14688x6 + 0.06722x7

ρcheck(x) = 0.10309x29 + 0.89691x30. (236)

3640 message bits are encoded to get a coded block length of 4095. The channel is

precoded PR-IV, and we assume AWGN.

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
10–6

10–5

10–4

10–3

10–2

10–1

1

SNR (dB)

S
ec

to
r

E
rr

or
 R

at
e

Conventional (25/5)

Proposed [25/5]

[50/5]

Know
n Tim

ing (10/5)

Figure 57: Rate-8/9 irregular LDPC code, moderate random walk, PR channel.

Figure 57 shows the sector error rate (SER) versus SNR for a moderate random

walk case σw/T = 0.5% with α = 0.04. A maximum of 106 packets were simulated

for each SNR. 21 interpolation coefficients were used in (233). We use the notation

140

x/y to denote the scheduling of iterations, where we have y LDPC iterations before

returning to the equalizer block, and we have a total of x such outer iterations, each

involving timing recovery followed by turbo equalization. After the waterfall region,

the proposed receiver almost achieves the performance of the system with perfect

timing. The floor in the code performance is due to the presence of cycles in the

graph of the code. The proposed timing recovery scheme performs well even in the

presence of cycles.

0 2050 4100
–3T/2

–T

–T/2

0

T/2

T

Time (in bit periods)

T
im

in
g

E
st

im
at

e

Actual τ

0

19 39
59

79

99

119

139
159

174

176

Figure 58: Automatic correction of cycle slips needs many iterations.

Next, we increase the random walk parameter to σw/T = 1% to study the effect

of cycle slips on the performance of the system. As mentioned before, the proposed

decoder corrects cycle slips on its own. This is illustrated for a sample packet at SNR

= 5 dB in Figure 58. The gray curve represents the actual τ sequence, the curve

labeled 0 shows τ̂ after the first pass of the PLL, and the other curves show τ̂ after

the number of iterations indicated by the corresponding label. Automatic cycle slip

correction is quite slow and, for this particular case, needs more than 175 iterations.

Convergence can be speeded up detecting the cycle slip early and correcting for it

as discussed in Section 7.4.2. This method works by declaring a cycle slip whenever the

141

0 2050 4100
–3T/2

–T

–T/2

0

T/2

T

Time (in bit periods)

T
im

in
g

E
st

im
at

e

τ̂15

τ

0 2050 4100
–0.4T

–0.2T

0

0.2T

0.4T

0.6T

Time (in bit periods)

T
im

in
g

E
st

im
at

e

Iteration 15 Iteration 16

τ̂16

500 600 700 800 900 1000

0.3T

0.4T

0.5T τ

τ̂15

τ̂16

Figure 59: Cycle slip detection reduces the number of iterations needed.

slope of the timing estimate waveform exceeds a threshold. This process is illustrated

for the same packet in Figure 59, with H = 0.75T and d = 100 for the slip detection

mechanism. With slip detection and correction, we correct the slip in this case by

the 16th iteration itself.

Figure 60 shows the performance of the same code for a severe random walk

σw/T = 1.0%, in which case we have cycle slips. In the presence of cycle slips, we

employ the cycle slip detection/correction mechanism described below: Declare a slip

whenever the magnitude of δk = τ̂k − τ̂k−d exceeds a given threshold H, for some

delay d. If a cycle slip is detected, this is corrected by holding the timing waveform

constant, for d symbols following the slip detection location, at the value just before

the detection of the slip. A random walk is generated by summing zero-mean elements,

and therefore, when a slip is detected, we correct it by holding the timing estimate

constant at the value just before the slip occurred. After correcting for the slip, we run

142

4 6 8 10 12 14 16
10–7

10–6

10–5

10–4

10–3

10–2

10–1

1

SNR (dB)

S
ec

to
r

E
rr

or
 R

at
e

Ignoring FEC (25/5)

Exploiting FEC [25/5]

[50/5]

Genie-aided PLL (25/5)

Known Timing (10/5)

Figure 60: Rate-8/9 irregular LDPC code, severe random walk, PR channel.

the soft Mueller and Müller TED using memoryless soft decisions instead of decisions

from the turbo equalizer. Other pertinent parameters are α = 0.055, maximum of 107

blocks simulated, d = 100, H = 0.75T and 21 interpolation coefficients. We observe

a gain of around 4 dB at SER = 10−5 when compared to the conventional system,

and the enhanced turbo equalizer is less than 1 dB away from a conventional receiver

with perfect timing.

7.4.5 High Rate Regular LDPC Code + Frequency Offset

Next, we consider a rate-8/9 (3, 27)-regular code of coded block length 4095, the

parity-check matrix of which has 3 ones in each column and 27 ones in each row. The

channel is precoded PR4 and we assume AWGN. In this case, we have only a frequency

offset. We assume perfect acquisition, i.e., τ0 = 0. The frequency offset parameter is

∆T = 0.2%. This is the same system considered for Figure 50. Within the duration

of a block, the τ waveform varies by as much as 8T , and therefore, cycle slips are quite

likely. As opposed to the random walk case, where the difference between consecutive

143

elements of the τ sequence was zero-mean, the difference of consecutive elements of

the τ sequence with a frequency offset is not zero-mean, and therefore the cycle slip

correction mechanism has to be modified.

As before, we declare a slip whenever the magnitude of δk = τ̂k − τ̂k−d exceeds

a given threshold H, for some delay d. If a slip is detected, then we use portions

not affected by the slip to estimate the frequency offset by the least squares method,

and use this estimate to correct the slipped region. After this is done, we revert to

memoryless soft-slicer decisions for further timing recovery as opposed to the using

soft decisions from the turbo equalizer.

If the number of iterations exceeds a certain threshold Ni, then we assume the

presence of an undetected cycle slip, and use the following procedure:

• Construct a sequence {δk} where δk = τ̂k − τ̂k−d,

• Compute the mean mδ and the standard deviation σδ of the sequence {δk},

• Compute mean mp
δ of those δk that lie in the interval [mδ − σδ,mδ + σδ],

• Set ∆̂T = mp
δ/d,

• Use ∆̂T to resample the whole block.

By doing this, in effect, we exclude the outliers (corresponding to the cycle slip) from

the frequency offset computation. This procedure is more computationally intensive

than the earlier one.

Figure 61 shows word (sector) error rate (SER) vs. SNR for the proposed system

with α = 0.04, β = α2/4, H = 0.75T , d = 100, with a maximum of 3 × 106 packets

being simulated. The threshold Ni was 100 iterations, and after Ni iterations, the

more complicated cycle-slip correction algorithm was implemented for at most 25

more iterations. At SER = 1 × 10−5, the proposed system gains around 3 dB when

compared to the conventional system and is around 0.8 dB away from the system

with perfect timing. Also, for this setting, the genie-aided system approaches the

system with known timing for high SNR.

144

4 5 6 7 8 9
10–6

10–5

10–4

10–3

10–2

10–1

100

S
ec

to
r

E
rr

or
 R

at
e

SNR (dB)

Conventional (25/5)

Proposed (100+25/1)

Genie-aided (100/1)

K
now

n T
im

ing (10/5)

Figure 61: Rate-8/9 regular LDPC code, frequency offset, PR channel.

7.4.6 For BER/SER performance, PLL is adequate

In all the results so far, we see that iterative timing recovery using the PLL gets us

close to the known timing performance, but we still have a performance gap, and at

high SNR, this can be attributed to unresolved cycle slips. In Chapter 5, we derived

optimal timing recovery methods that achieve the CRB. A natural question at this

stage would be: what is the effect of using those timing recovery methods instead in

the PLL in iterative timing recovery?

The timing recovery algorithms discussed in Chapter 5 were chosen to minimize

the timing error variance, whereas, the metrics used in this chapter were the bit-error

rate (BER) and the sector-error rate (SER). A large gap in the timing error variance

performance translates to only a small gap in the BER or the SER curves as the turbo

equalizer is capable of handling small timing errors very well, and it is only when the

timing errors become large that we get bit errors. For the constant offset case, even

though there is a 5 dB gap between the performance of the constant-gain PLL and

the ML scheme (Figure 32) in terms of the timing error variance, the BER curves

145

for the two are virtually indistinguishable for the same set of parameters used to get

Figure 32. In other words, when we are interested on the BER/SER performance of

the system, a PLL is adequate.

In the case of the frequency offset, the Levenberg-Marquardt (LM) method de-

scribed depends on the PLL for the first pass, and if the PLL has a cycle slip, the LM

algorithm is not able to overcome the effects of the wrong initialization. The surface

of the cost function is such that the receiver gets pushed into one of the many local

minima. In cases where the PLL did not suffer a cycle slip, we observe the same

effect where the gap in the timing error variance almost vanishes in the BER/SER

domain. Therefore, even in this case, for BER/SER performance, the PLL performs

adequately.

Finally, for the random walk case, the MAP estimator is a linear filter that acts on

the output of the PLL, leading to a significant reduction in the timing error variance.

The linear filter is a smoothing filter that performs localized weighted averaging on

the PLL output, and in the presence of cycle slips, localized averaging is ineffective.

Hence, we have a similar effect.

Therefore, for all the timing models considered here, in an iterative setting, a PLL

performs adequately. This suggests that, in an iterative setting, it is the process of

information exchange rather than the strict optimality of the constituent blocks that

counts. This ties in with the excellent performance of RA codes. An RA code is a

serial concatenation of a repetition code and an accumulator, both rather weak codes.

With iterative decoding, RA codes have been shown to achieve capacity on certain

channels, and approach capacity on others [29].

7.4.7 Optimal Acquisition and Iterative Tracking

We consider again the system of Section 7.4.5 with a rate-8/9 (3, 27)-regular code

of coded block length 4095, the parity-check matrix of which has 3 ones in each

146

column and 27 ones in each row. The channel is precoded PR4 and we assume

AWGN. We assume a frequency offset model with the frequency offset parameter

being ∆T = 0.2%. To aid acquisition, the LDPC codeword is prefixed by a length-60

1100 periodic pattern, and followed by a length-60 random bit pattern. This conforms

to the optimal acquisition arrangement derived in Chapter 6. These additional bits

represent a 2.9% overhead in terms of the number of bits written into the channel

per message packet. The acquisition strategy used here is the same as discussed in

Section 6.5. During the iterations of the iterative timing recovery block, the cycle slip

detection/correction strategy is the same as the one used in the Section 7.4.5.

4 5 6 7 8 9
10–6

10–5

10–4

10–3

10–2

10–1

100

SNR (dB)

S
ec

to
r

E
rr

or
 R

at
e

Conventional (25/5)

Proposed (100+25/1)

Acquisition + Proposed (100+25/1)

Genie-aided(100/1)

K
now

n T
im

ing (10/5)

Figure 62: Performance with optimal acquisition and iterative tracking.

Figure 62 shows word (sector) error rate vs. SNR curves for this system with

α = 0.04, β = α2/4, H = 0.75T , d = 100, Ni = 100, with a maximum of 3 × 106

packets being simulated. The system with the optimal acquisition arrangement and

iterative timing recovery during the tracking phase performs to within 0.4 dB of

the genie-aided system at SER = 1 × 10−5, thus recovering most of the loss of the

conventional system when compared to the system with known timing.

147

7.4.8 Complexity Comparison

In this section, we compare the computational complexity of the various schemes

discussed in this chapter: a system where the timing offsets are known (System I);

a genie-aided system where the timing recovery block has access to the transmitted

symbols (System II); the conventional system that separates the turbo equalizer and

the timing recovery (System III); the proposed joint timing recovery and turbo equal-

ization system (System IV); and finally the system with optimal acquisition and iter-

ative timing recovery during tracking (System V). We again consider the simulation

setting of Sections 7.4.5 and 7.4.7. The measure of comparison is the average number

of operations needed per coded bit. There are three kinds of operations involved in

the receiver: addition (A), multiplication (M) and look-up (LU). (The logarithm and

the sinc function are assumed to be implemented using a look-up table.)

First, we calculate the total number of such operations needed for each of the

individual blocks: the timing recovery and interpolation block; the SISO equalizer

based on the BCJR algorithm; and the LDPC decoder based on message passing.

• Timing Recovery: For each symbol index, the MM TED involves (2)M and

(1)A. The PLL update involves (2)M and (2)A. Assuming we use K interpola-

tion coefficients, we have (K)M, (K)A and (K)LU for the interpolation step.

The first pass of the PLL does not involve interpolation, and therefore, its per-

symbol complexity is (4)M and (3)A. For each symbol during a subsequent call

of the timing recovery block, we have a total of (K+4)M, (K+3)A and (K)LU.

• BCJR Equalizer: Each γ computation involves (4)M, (1)A and (1)LU. As-

suming Ni and No are the sizes of the input and the output alphabets, each

stage involves NiNo gamma computations. Each α computation involves (Ni)A

and (Ni)M. Similarly for each β. Each stage has Q αs and Q βs, where Q is

the total number of states at any time instant in the trellis. Finally, the LLR

148

computation involves (4Q+ 1)M, (2Q)A and (1)LU. Putting it all together, we

get (4NiNo + 2QNi + 4Q+ 1)M, (NiNo + 2QNi + 2Q)A and (NiNo + 1)LU for

each coded symbol in a call of the SISO equalizer.

• LDPC decoder: We consider a regular LDPC code. Let Nb be the total

number of bit nodes and Nc be the total number of check nodes. Also, let

db be the degree of the bit nodes and let dc be the degree of the check nodes.

The bit-to-check message computations involve (Nb+2dbNb)A. The check-to-bit

message computations involve (2dcNc)M, (2dcNc)A and (2dcNc)LU. Finally, the

LLR evaluation involves (Nb)A. Adding it all up and dividing by Nb to get the

complexity per bit, we get (2db)M, (2(1 + 2db))A and (2db)LU.

The three kinds of operations are combined into a single number as follows. We

assume that A and LU are equivalent in terms of complexity and that an M can be

implemented using 1A and 3LU using logarithms. For the LDPC-coded system under

consideration with K = 21, Ni = 2, No = 3, Q = 4 and db = 3, we get the following

complexity metrics for each of the constituent blocks:

• First pass timing recovery: 19,

• Subsequent passes of the timing recovery block: 145,

• BCJR equalizer: 265,

• LDPC decoder iteration: 44.

Next, by simulation, we compute the average number of times each of these blocks

is called for the various systems. The stopping criterion for the iterations was as

follows. At the end of each LDPC decoder iteration, we check whether all the parity-

check equations are satisfied. If so, the receiver stops iterations. Else, iterations

continue till a predetermined maximum number of iterations are reached. These

149

measured iteration numbers are then weighted by the complexity metrics listed above

to get the final complexity measure, which is the total number of operations needed

per coded bit for the different schemes.

4 5 6 7 8 9
102

103

104

105

SNR (dB)

A
vg

. n
o.

 o
f o

pe
ra

tio
ns

 p
er

 c
od

ed
 b

it Known Timing
Genie-aided
Conventional
Proposed
Proposed + Acq

Figure 63: Comparing the complexity of the different schemes.

Figure 63 plots the complexity of the different systems as a function of SNR.

The system parameters are the same as used to arrive at the performance plot of

Figure 62. The system with known timing has the least complexity at all SNRs.

For reasonably high SNRs, the complexity of the proposed iterative timing recovery

scheme approaches that of the system with known timing. Asymptotically, as SNR

increases, this difference is exactly the complexity of the first-pass PLL. The scheme

with optimal acquisition and iterative timing recovery has lower complexity than the

one with just iterative timing recovery. As SNR increases, Systems II, III, IV and V

converge to the same complexity, which is the sum of the complexities of the first-

pass PLL (19), the BCJR equalizer(265) and the LDPC decoder (44). Therefore,

on an average, the proposed schemes are only marginally more complex than the

conventional system and at the same time provides a distinct advantage in terms of

150

the SNR of operation as shown in Figure 62. The method used here to arrive at a

single number denoting the complexity of the system is rather arbitrary, but even

with different methods to quantify system complexity, we observe the same trends.

7.5 Summary

The conventional receiver that separates timing recovery and turbo equalization faces

a large performance penalty even with moderately severe timing jitter models. Com-

paring its performance to that of the genie-aided system, we conclude that much of

the loss is due to the poor quality of the decisions available to the timing recovery

block. To solve this problem, we proposed iterative timing recovery where the bet-

ter decisions after turbo equalization iterations are fed back to the timing recovery

block. This led to improved quality of the samples, further improving the perfor-

mance of the turbo equalizer. In all the cases considered, iterative timing recovery

using the PLL-based timing recovery block recovered most of the performance loss

of the conventional system when compared to the genie-aided system. In addition,

the PLL-based system fares almost as well as the CRB-achieving timing recovery

methods in an iterative setting.

An advantage of iterative timing recovery is the fact that it can correct cycle

slips. However, the number of iterations needed to correct cycle slips can get large

depending on the SNR and the timing models used. We present simple cycle slip

detection/correction methods that significantly reduce the total number of iterations

needed. The remaining SNR loss of iterative timing recovery is largely due to un-

resolved cycle slips. Both performance loss and complexity can be reduced further

by modifying the acquisition algorithm. Splitting the preamble into two halves and

placing these one at the beginning and one at the end reduces the occurrence of cycle

slips, thus reducing the complexity of the system.

151

CHAPTER 8

CONCLUSION

In this thesis, we dealt with the problem of timing recovery at low SNR for channels

beset with inter-symbol interference (ISI) and low signal-to-noise ratio (SNR). A

good example of such a situation is the magnetic recording channel, especially in

conjunction with the use of iteratively decodable codes that increase the recording

density, thus increasing the level of ISI and reducing the SNR.

8.1 Main Contributions

The following are the main results in this thesis.

• We derived lower bounds on timing estimation error based on the Cramér-

Rao bound for different timing offset models. These bounds were then used

to evaluate the performance of the conventional PLL-based timing recovery

method. [47]

• We developed block-processing timing recovery methods that outperformed the

PLL-based one and, in some cases, achieved the Cramér-Rao bound. These

are based on gradient-search, Newton’s method and the maximum a posteriori

estimation algorithms.

• We analyzed the performance of current acquisition algorithms, and derived

the optimal placement of the preamble symbols to minimize the CRB on the

timing estimation error. This optimal arrangement was also shown to reduce

the occurrence of cycle slips.

• We proposed the iterative timing recovery algorithm for coded systems that use

152

iteratively decodable codes. Iterative timing recovery jointly performs timing

recovery, equalization and decoding by embedding the timing recovery unit

inside the turbo equalizer. This leads to significant reduction in the SNR of

operation with marginal increase in complexity of the turbo equalizer iterations.

[46] [45] [48] [4]

8.2 Future Work

• The problem of joint tracking and acquisition warrants further study. We as-

sumed that we use correlation techniques to detect the start of transmission,

thus limiting the initial timing offset to within a symbol duration. Lower bounds

on performance and improved techniques for the general problem that includes

detection of start of transmission, acquisition and tracking need to be developed.

• It is unclear whether the optimal preamble placement to minimize the CRB for

the frequency case is still the optimal strategy in the presence of a random walk

during the tracking phase. This needs to be analyzed further.

• Alternative methods that perform joint timing recovery, equalization and error-

control decoding have been proposed and studied. Some of these are detailed in

[31], [40], [4], [43], [50] and [17]. A framework unifying these various algorithms

and the iterative timing recovery algorithm proposed here is desirable.

• The highly non-linear phenomenon of cycle slips has to be studied to improve the

performance of iterative timing recovery. Analysis for simpler channel models

is available in [64], but so far the combination of the channel and timing models

considered here has been intractable. This analysis would hopefully help in

dealing with cycle slips in a fashion more systematic than the current ad hoc,

common sense ones employed in this thesis.

153

APPENDIX A

SOFT SLICER FOR THE PR-IV CHANNEL

In this appendix, we present the derivation of the soft slicer used in (15) in Sec-

tion 2.2.3. We consider a memoryless soft slicer that uses observation rk to output a

soft decision d̃k = E[dk|rk]. For the PR-IV channel, where dk takes on values−2, 0,+2,

d̃k becomes

d̃k = 2Pr[dk = 2|rk]− 2Pr[dk = −2|rk], (237)

where Pr[dk = 2|rk] is the probability that dk = 2 given the observation rk. Similarly

for Pr[dk = −2|rk]. Applying Bayes’ rule, we get

Pr[dk = 2|rk] =
p(rk|dk = 2)Pr[dk = 2]

p(rk)
,

Pr[dk = −2|rk] =
p(rk|dk = −2)Pr[dk = −2]

p(rk)
, (238)

where p(rk|dk = 2) is a shorthand notation for the p.d.f. of the observation condi-

tioned on dk = 2 evaluated at the observed value rk. Similarly for p(rk|dk = −2) and

p(rk). p(rk) can be evaluated as follows:

p(rk) =
1

4
p(rk|dk = −2) +

1

2
p(rk|dk = 0) +

1

4
p(rk|dk = 2). (239)

With additive white Gaussian noise of variance σ2, the conditional probabilities are

p(rk|dk = −2) =
1√
2πσ

exp

{
−(rk + 2)2

2σ2

}
, (240)

p(rk|dk = 0) =
1√
2πσ

exp

{
−(rk)

2

2σ2

}
and (241)

p(rk|dk = 2) =
1√
2πσ

exp

{
−(rk − 2)2

2σ2

}
. (242)

Combining these with (237), (238) and (239), we get

d̃k =
2 sinh(2rk/σ

2)

cosh(2rk/σ2) + e2/σ2 . (243)

154

APPENDIX B

INVERTING THE TOTAL INFORMATION

MATRIX FOR A RANDOM WALK

In this appendix, we present the details regarding the inversion of the total informa-

tion matrix of the random walk process given by (114),

JT =
1

σ2
w

λ −1 0 . . . 0

−1 λ −1
. . .

...

0
. 0

...
. . . −1 λ −1

0 . . . 0 −1 λ− 1

,

where

λ = 2 + Eh′
σ2
w

σ2
. (244)

To invert JT , we follow a three step procedure. First we do a Cholesky factoriza-

tion of σ2
wJT to get σ2

wJT = LLT , where L is a lower triangular matrix. Then, we

solve LC = I to get C. Next, solve LTB = C for B, and finally, [JT]−1 = σ2
wB.

The matrix equation to be solved is

l00 0 0 . . . 0

l10 l11 0 . . . 0

l20 l21 l22 . . . 0

...
...

...
. . .

...

ln0 ln1 ln2 . . . lnn

l00 l10 l20 . . . ln0

0 l11 l21 . . . ln1

0 0 l22 . . . ln2

...
...

...
. . .

...

0 0 0 . . . lnn

=

λ −1 0 . . . 0

−1 λ −1
. . .

...

0
. 0

...
. . . −1 λ −1

0 . . . 0 −1 µ

, (245)

where µ = λ− 1 and n = N − 1.

155

If we consider (i, k) such that |i − k| > 1, and equate the (i, k)th term on both

sides, we get

min(i,k)∑
j=0

lijlkj = 0. (246)

Plugging in i = 0, we get lk0 = 0 for k ≥ 2. Using this in the case with i = 1,

we get lk1 = 0 for k ≥ 3. Proceeding this way, we get lkj = 0 for k ≥ j + 2 where

0 ≤ j ≤ N − 4. This means L is a Toeplitz matrix with only two non-zero diagonals.

Next, if we look at (i, k) such that i− k = 1, and equate the (i, k)th term on both

sides, we get

li i−1li−1 i−1 = −1 =⇒ li i−1 = − 1

li−1 i−1

. (247)

To simplify notation, we redefine li = lii, in which case, L takes the form

L =

l0

− 1
l0

l1

− 1
l1

l2

.

− 1
ln−1

ln

, (248)

where the entries not shown are all zero.

Finally, equating diagonal entries on both sides of Equation 245

l2i =

λ : i = 0

λ− 1
l2i−1

: 1 ≤ i ≤ N − 2

(λ− 1)− 1
l2i−1

: i = N − 1,

(249)

which gives a recursive definition of the matrix L.

Next, we solve LC = I. We need to solve N matrix equations of the form

Lci = ei, (250)

where ci and ei represent the ith column of C and I respectively. Each of these

matrix equations has N scalar equations.

156

Let ci = [c0i c1i . . . cN−1 i]
T . The first scalar equation in the ith matrix equation

(i > 0) gives c0i = 0. Using this in the second equation, we get c1i = 0. Proceeding

thus, we can show that cji = 0 for j < i. The ith equation gives −ci−1 i/li−1 + ciili =

1 =⇒ cii = 1/li. For j > i, we get cji = cj−1 i/(ljlj−1). This recursion can be

easily solved, and the final form for the cjis is given by

cji =

0 : j < i

1
li

: j = i

1
l2i l

2
i+1...l

2
j−1lj

: j > i.

(251)

Having defined C, we next solve LTB = C. Writing this out, we have N matrix

equations of the form

l0 − 1
l0

l1 − 1
l1

.

lN−2 − 1
lN−2

lN−1

b0i

b1i

...

bN−2 i

bN−1 i

=

c0i

c1i

...

cN−2 i

cN−1 i

, (252)

where bi = [b0i b1i . . . bN−1 i]
T is the ith column of B.

Beginning from the last scalar equation, corresponding to j = N − 1, we get

bN−1 i = cN−1 i/lN−1. In general, we get bji = bj+1 i/l
2
j + cji/lj. Substituting the values

for cji from Equation 251, we have

bji =

1
l2i l

2
i+1...l

2
N−2l

2
N−1

: j = N − 1

bj+1 i

l2j
+ 1

l2i l
2
i+1...l

2
j−1l

2
j

: j ≥ i

bj+1 i

l2j
: j < i.

(253)

Notice that the recursion specified in Equation 253 deals with lj only in the

squared form. Therefore, to simplify notation further, define fj+1 = l2j . (The in-

dices are related this way to simplify the calculations down the road.) The recursion

157

of Equation 249 can now be rewritten as

fj =

λ : j = 1

λ− 1
fj−1

: 2 ≤ j ≤ N − 1

(λ− 1)− 1
fj−1

: j = N.

(254)

Break up fj into numerator nj and denominator dj so that fj = nj/dj. If we now

restrict ourselves to 2 ≤ j ≤ N − 1 and use Equation 254, we get

dj = nj−1

nj = λnj−1 − dj−1

= λnj−1 − nj−2, (255)

with initial conditions n1 = λ and n0 = 1, given by f1 = n1/d1 = n1/n0 = λ/1. This

recursion has a solution given by

nj =
ηj+2 − η−j

η2 − 1
, (256)

where

η =
λ+
√
λ2 − 4

2
(257)

is a zero of the characteristic polynomial D2 − λD + 1 associated with the recursion

of Equation 255. Combining Equations 254 and 255,

fj =

nj
nj−1

: 1 ≤ j ≤ N − 1

nj−nj−1

nj−1
: j = N,

(258)

where we recognize the fact that fN is got simply by subtracting 1 from the value for

fN given by the recursion.

From Equations 253 and 258,

bN−1 i =
1

fi+1fi+2 . . . fN−1fN
=

ni
nN − nN−1

. (259)

158

Proceeding backwards, we get

bN−2 i =
bN−1 i

fN−1

+
1

fi+1fi+2 . . . fN−2fN−1

=
bN−1 inN−2

nN−1

+
ni

nN−1

= (λ− 1)
ni

nN − nN−1

. (260)

and in general,

bji = aj
ni

nN − nN−1

(261)

for j ≥ i, where aj satisfies the recursion

aj−1 = λaj − aj+1 (262)

with initial conditions aN−1 = 1 and aN−2 = λ− 1. This has the solution

aj =
ηN−j + η−N+1+j

η + 1
(263)

with η as defined in Equation 257.

Next, we recognize the fact that B, which is the inverse of a symmetric matrix,

is symmetric. So, bij = bji, which takes care of the case when j < i. Therefore,

[JT]−1
ij = σ2

w[B]ij = σ2
w

amax(i,j)nmin(i,j)

nN − nN−1

(264)

for 0 ≤ i, j ≤ N − 1.

To get the CRB on the estimation error for the individual timing estimates τk, we

need the diagonal elements of [JT]−1. Combining Equations 244, 257, 263 and 264,

and simplifying, the lower bound can be expressed as

E[(τ̂i(r)− τi)2]

T 2
≥ [J11

1]−1
ii

T 2
= h · f(i), (265)

where

h =
σ2
w

T 2

η

η2 − 1
is the steady state value,

f(i) = tanh
(

(N +
1

2
) ln η

)1−
sinh

(
(N − 2i+ 1

2
) ln η

)
sinh

(
(N + 1

2
) ln η

)
 ,

η =
λ+
√
λ2 − 4

2
and λ = 2 + Eh′

σ2
w

σ2
. (266)

159

REFERENCES

[1] Adireddy, S., Tong, L., and Viswanathan, H., “Optimal placement of
known symbols for frequency-selective flat-fading channels,” IEEE Transactions
on Information Theory, vol. 48, pp. 2338–2353, Aug. 2002.

[2] Adler, R. L., Coppersmith, D., and Hassner, M., “Algorithms for sliding
block codes: An application of symbolic dynamics to information theory,” IEEE
Transactions on Information Theory, vol. IT-29, pp. 5–22, Jan. 1983.

[3] Bahl, L., Cocke, J., Jelinek, F., and Raviv, J., “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Transactions on Information
Theory, vol. IT-20, pp. 284–287, Mar. 1974.

[4] Barry, J., Kavcic, A., McLaughlin, S., Nayak, A., and Zeng, W., “It-
erative timing recovery,” IEEE Signal Processing Magazine, vol. 21, pp. 89–102,
Jan. 2004.

[5] Barry, J., Lee, E., and Messerschmitt, D., Digital Communication.
Boston, Massachusetts: Kluwer Academic Publishers, third ed., 2004.

[6] Baum, L. E., Petrie, T., Soules, G., and Weiss, N., “A maximization
technique occurring in the statistical analysis of probabilistic functions of Markov
chains,” The Annals of Mathematical Statistics, vol. 41, no. 1, pp. 164–171, 1970.

[7] Benedetto, S., Divsalar, D., Montorsi, G., and Pollara, F., “Serial
concatenation of interleaved codes: Performance analysis, design and iterative
decoding,” IEEE Transactions on Information Theory, vol. 44, pp. 909–926, May
1998.

[8] Bergmans, J. W. M., Digital Baseband Transmission and Recording, section
2.3, pp. 55–74. Boston, Massachusetts: Kluwer Academic Publishers, 1996.

[9] Berrou, C., Glavieux, A., and Thitimajshima, P., “Near Shannon limit
error-correcting coding and decoding: Turbo codes,” Proceedings of the IEEE
International Conference on Communications 1993, vol. 2, pp. 1064–1070, May
1993.

[10] Budianu, C. and Tong, L., “Training symbol placement for packet trans-
missions under asynchronous influence,” Proceedings of the IEEE Workshop on
Signal Processing Advances in Wireless Communications, June 2003.

[11] Chiavaccini, E. and Vitetta, G. M., “A per-survivor phase-estimation al-
gorithm for detection of PSK signals,” IEEE Transactions on Communications,
vol. 49, pp. 2059–2061, Dec. 2001.

160

[12] Christiansen, G. S., “Modeling of a PRML timing loop as a Kalman filter,”
Proceedings of the IEEE Global Telecommunications Conference 1994, vol. 2,
pp. 1157–1161, Nov. 1994.

[13] Chung, S.-Y., Forney, G., Urbanke, R., and Richardson, T., “On the
design of low-density parity-check codes within 0.0045 dB of the Shannon limit,”
IEEE Communications Letters, vol. 5, pp. 58–60, Feb. 2001.

[14] Chung, S.-Y., Urbanke, R., and Richardson, T., “Analysis of sum-product
decoding of low-density parity-check codes using a Gaussian approximation,”
IEEE Transactions on Information Theory, vol. 47, pp. 657–670, Feb. 2001.

[15] Cideciyan, R., Dolivo, F., Hermann, R., Hirt, W., and Schott, W., “A
PRML system for digital magnetic recording,” IEEE Journal on Selected Areas
in Communications, vol. 10, pp. 38–56, Jan. 1992.

[16] Datta, S. and McLaughlin, S. W., “An enumerative method for run-length
limited codes: Permutation codes,” IEEE Transactions on Information Theory,
vol. 45, pp. 2199–2204, Sept. 1999.

[17] Dauwels, J. and Loeliger, H.-A., “Joint decoding and phase estimation: an
exercise in factor graphs,” Proceedings of the IEEE International Symposium on
Information Theory, 2003, pp. 231–231, July 2003.

[18] Del Re, E., Ronga, L. S., and Bartolozzi, M., “Robust iterative synchro-
nization algorithm using Calabro Wolf perfect arrays,” Proceedings of the Inter-
national Conference on Acoustics, Speech, and Signal Processing, 2001, vol. 4,
pp. 2333–2336, May 2001.

[19] Dempster, A. P., Laird, N. M., and Rubin, D. B., “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal Statistical
Society, Series B, vol. 39, no. 1, pp. 1–38, 1977.

[20] Dong, M., Tong, L., and Sadler, B. M., “Optimal insertion of pilot symbols
for transmissions over time-varying flat fading channels,” IEEE Transactions on
Signal Processing, vol. 52, pp. 1403–1418, May 2004.

[21] Driessen, P. F., “DPLL bit synchronizer with rapid acquisition using adaptive
Kalman filtering techniques,” IEEE Transactions on Communications, vol. 42,
pp. 2673–2675, Sept. 1994.

[22] Ferrari, G., Anastasopoulos, A., Colavolpe, G., and Raheli, R.,
“Adaptive iterative detection for the phase-uncertain channel: limited-tree-
search versus truncated-memory detection,” IEEE Transactions on Vehicular
Technology, vol. 53, pp. 433–442, Mar. 2004.

[23] Forney, G., “The Viterbi algorithm,” Proceedings of the IEEE, pp. 268–278,
Mar. 1973.

161

[24] Forney Jr., G. D. and Eyuboglu, M. V., “Combined equalization and
coding using precoding,” IEEE Communications Magazine, vol. 29, pp. 25–34,
Dec. 1991.

[25] Gallager, R., “Low-density parity-check codes,” IRE Transactions on Infor-
mation Theory, vol. IT-8, pp. 21–28, Jan. 1962.

[26] Georghiades, C. and Snyder, D., “The expectation-maximization algorithm
for symbol unsynchronized sequence detection,” IEEE Transactions on Commu-
nications, vol. 39, pp. 54–61, Jan. 1991.

[27] Hamkins, J. and Divsalar, D., “Coupled receiver-decoders for low rate turbo
codes,” Proceedings of the IEEE International Symposium on Information The-
ory, 2003, pp. 381–381, July 2003.

[28] Immink, K. A. S., Coding Techniques for Digital Recorders. Englewood Cliffs,
New Jersey: Prentice-Hall, 1991.

[29] Jin, H., Khandekar, A., and McEliece, R., “Irregular repeat-accumulate
codes,” Proceedings of the 2nd International Symposium on Turbo Codes and
Related Topics, pp. 1–8, Sept. 2000.

[30] Jin, X. and Kavc̆ić, A., “Cycle-slip detection using soft-output information,”
Proceedings of the IEEE International Conference on Communications 2001,
vol. 9, pp. 2706–2710, June 2001.

[31] Kovintawevat, P., Erden, M. F., Kurtas, E., and Barry, J., “A new
timing recovery architecture for fast convergence,” Proceedings of the IEEE In-
ternational Symposium on Circuits and Systems (ISCAS2003), vol. 2, pp. 13–16,
May 2003.

[32] Kozierok, C., “PCGuide: Hard disk drives.” Available online at
http:www.pcguide.com/ref/hdd/index.htm.

[33] Loeliger, H.-A., Dauwels, J., Koch, V. M., and Korl, S., “Signal pro-
cessing with factor graphs: examples,” Proceedings of the First International
Symposium on Control, Communications and Signal Processing, 2004, pp. 571–
574, Mar. 2004.

[34] Lottici, V. and Luise, M., “Carrier phase recovery for turbo-coded linear
modulations,” Proceedings of the IEEE International Conference on Communi-
cations 2002, vol. 3, pp. 1541–1545, May 2002.

[35] Lottici, V. and Luise, M., “Embedding carrier phase recovery into iterative
decoding of turbo-coded linear modulations,” IEEE Transactions on Communi-
cations, vol. 52, pp. 661–669, Apr. 2004.

162

[36] Ma, X., Giannakis, G. B., and Ohno, S., “Optimal training for block trans-
missions over doubly selective wireless fading channels,” IEEE Transactions on
Signal Processing, vol. 51, pp. 1351–1366, May 2003.

[37] Marcus, B., Siegel, P. H., and Wolf, J. K., “Finite-state modulation
codes for data storage,” IEEE Journal on Selected Areas in Communications,
vol. SAC-10, pp. 5–37, Jan. 1992.

[38] Mee, C. D. and Daniels, E. D., Magnetic Recording. New York: McGraw-
Hill, 1987.

[39] Meyr, H., Moeneclaey, M., and Fechtel, S. A., Digital Communication
Receivers: Synchronization, Channel Estimation and Signal Processing. Wiley
Series in Telecommunications and Signal Processing, New York: John Wiley and
Sons, Inc., 1997.

[40] Mielczarek, B. and Svensson, A., “Improved MAP decoders for turbo codes
with non-perfect timing and phase synchronization,” Proceedings of the IEEE
Vehicular Technology Conference 1999, vol. 3, pp. 1590–1594, Sept. 1999.

[41] Mielczarek, B. and Svensson, A., “Joint adaptive rate turbo decoding and
synchronization on Rayleigh fading channels,” Proceedings of the IEEE Vehicular
Technology Conference 2001, vol. 2, pp. 1342–1346, May 2001.

[42] Mielczarek, B. and Svensson, A., “Phase offset estimation using enhanced
turbo decoders,” Proceedings of the IEEE International Conference on Commu-
nications 2002, vol. 3, pp. 1536–1540, May 2002.

[43] Motedayen-Aval, I. and Anastasopoulos, A., “Polynomial-complexity
noncoherent symbol-by-symbol detection with application to adaptive iterative
decoding of turbo-like codes,” IEEE Transactions on Communications, vol. 51,
pp. 197–207, Feb. 2003.

[44] Mueller, K. and Müller, M., “Timing recovery for digital synchronous data
receivers,” IEEE Transactions on Communications, vol. com-24, pp. 516–531,
May 1976.

[45] Nayak, A., Barry, J., and McLaughlin, S., “Joint timing recovery and
turbo equalization for coded partial response channels,” IEEE Transactions on
Magnetics, vol. 38, pp. 2295–2297, Sept. 2002.

[46] Nayak, A., Barry, J., and McLaughlin, S., “Joint timing recovery and
turbo equalization for partial response channels,” Proceedings of the IEEE In-
ternational Conference on Magnetics (Intermag) 2002, p. BR03, Apr. 2002.

[47] Nayak, A., Barry, J., and McLaughlin, S., “Lower bounds for the perfor-
mance of iterative timing recovery at low SNR,” Proceedings of the Fifteenth
International Symposium on Mathematical Theory of Networks and Systems
(MTNS), pp. WM2–5, Aug. 2002.

163

[48] Nayak, A., Barry, J., and McLaughlin, S., “Iterative timing recovery and
turbo equalization,” Proceedings of the 3rd International Symposium on Turbo
Codes and Related Topics, p. M01, Sept. 2003.

[49] Negi, R. and Cioffi, J., “Pilot tone selection for channel estimation in a
mobile OFDM system,” IEEE Transactions on Consumer Electronics, vol. 44,
pp. 1122–1128, Aug. 1998.

[50] Noels, N., Herzet, C., Dejonghe, A., Lottici, V., Steendam, H.,
Moeneclaey, M., Luise, M., and Vandendorpe, L., “Turbo synchroniza-
tion : an EM algorithm interpretation,” Proceedings of the IEEE International
Conference on Communications, 2003, vol. 4, pp. 2933–2937, May 2003.

[51] Nuriyev, R. and Anastasopoulos, A., “Analysis of joint iterative decoding
and phase estimation for the noncoherent AWGN channel, using density evolu-
tion,” Proceedings of the IEEE International Symposium on Information Theory,
2002, p. 168, July 2003.

[52] Oh, W. and Cheun, K., “Joint decoding and carrier phase recovery algorithm
for turbo codes,” IEEE Communications Letters, vol. 5, pp. 375–377, Sept. 2001.

[53] Patapoutian, A., “On phase-locked loops and Kalman filters,” IEEE Trans-
actions on Communications, vol. 47, pp. 670–672, May 1999.

[54] Raphaeli, D. and Zarai, Y., “Combined turbo equalization and turbo de-
coding,” Proceedings of the IEEE Global Telecommunications Conference 1997,
vol. 2, pp. 639–643, Nov. 1997.

[55] Richardson, T., Shokrollahi, A., and Urbanke, R., “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Transactions on
Information Theory, vol. 47, pp. 619–637, Feb. 2001.

[56] Roh, G., Lee, Y., and Kim, B., “Optimum phase-acquisition technique for
charge-pump PLL,” IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, vol. 44, pp. 729–740, Sept. 1997.

[57] Roweis, S., “Levenberg-Marquardt optimization.” Available online at
http://www.cs.toronto.edu/∼roweis/notes/lm.pdf.

[58] Scharf, L. L., Statistical Signal Processing: Detection, Estimation, and Time
Series Analysis, p. 230. New York: Addison-Wesley, 1990.

[59] Scharf, L. L. and McWhorter, L., “Geometry of the Cramér-Rao bound,”
Signal Processing, vol. 31, pp. 1–11, Apr. 1993.

[60] Simon, M. K. and Villnrotter, V. A., “Iterative information-reduced car-
rier synchronization using decision feedback for low-SNR applications,” The
NASA Telecommunications and Data Acquisition Progress Report 42-130, June
1997.

164

[61] Souvignier, T., Friedmann, A., Oberg, M., Siegel, P., Swanson, R.,
and Wolf, J., “Turbo decoding for PR4: Parallel vs. serial concatenation,” Pro-
ceedings of the IEEE International Conference on Communications 1999, vol. 3,
pp. 1638–1642, June 1999.

[62] Steendam, H., Noels, N., and Moeneclaey, M., “Iterative carrier phase
synchronization for low-density parity-check coded systems,” Proceedings of the
IEEE International Conference on Communications, 2003, vol. 5, pp. 3120–3124,
May 2003.

[63] Van Trees, H. L., Detection, Estimation, and Modulation Theory, vol. 1, chap-
ter 2, pp. 72–85. New York: John Wiley and Sons, Inc., first ed., 1968.

[64] Van Trees, H. L., Detection, Estimation, and Modulation Theory, vol. 2, chap-
ter 3, pp. 37–84. New York: John Wiley and Sons, Inc., first ed., 1971.

[65] Walsh, J. W., Johnson, Jr., C. R., and Regalia, P. A., “Joint synchro-
nization and decoding exploiting the turbo principle,” Proceedings of the 38th
Conference on Information Sciences and Systems, 2004, pp. 17–19, Mar. 2004.

[66] Wiberg, N., Codes and Decoding on General Graphs. PhD dissertation, Uni-
versity of Linköping, Department of Electrical Engineering, 1996.

[67] Wicker, S. B., Error Control Systems for Digital Communication and Storage.
Upper Saddle River, New Jersey: Prentice Hall, 1995.

[68] Xiao, P. and Ström, E., “Synchronization algorithms for iterative demodu-
lated M-ary DS-CDMA systems,” Proceedings of the IEEE Global Telecommu-
nications Conference, 2001, vol. 2, pp. 1371–1375, Nov. 2001.

[69] Zeng, W. and Kavcic, A., “MAP detection in noisy channels with synchro-
nization errors (including the insertion/deletion channel),” Proceedings of the
IEEE International Symposium on Information Theory, 2003, pp. 232–232, July
2003.

[70] Zhang, L. and Burr, A. G., “A new method of carrier phase recovery for
BPSK system using turbo-codes over AWGN channel,” Proceedings of the 12th
IEEE International Symposium on Personal, Indoor and Mobile Radio Commu-
nications, 2001, vol. 1, pp. A179–A183, Oct. 2001.

[71] Zhang, L. and Burr, A. G., “APPA symbol timing recovery scheme for turbo
codes,” Proceedings of the 13th IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications, 2002, vol. 1, pp. 44–48, Sept. 2002.

[72] Zhao, Q., Kim, H., and Stuber, G. L., “Adaptive iterative phase synchro-
nization for serially concatenated continuous phase modulation,” Proceedings of
the IEEE Military Communications Conference, 2003, vol. 1, pp. 78–83, Oct.
2003.

165

VITA

Aravind Nayak was born in Davangere, India in 1978, and attended high school in Hy-

derabad, India. He joined the Indian Institute of Technology, Madras in 1995 for his

undergraduate education, and obtained his Bachelor in Technology (B. Tech.) degree

in Electrical Engineering in July 1999. He also received a Master of Science (M.S.)

from the School of Electrical and Computer Engineering at the Georgia Institute of

Technology, Atlanta in December 2000. He has been a student member of the IEEE

since 1999. He completed the requirements for the degree of Doctor of Philosophy

(Ph. D.) at the Georgia Institute of Technology in June 2004.

166

