
Timing Recovery

Based on Per-Survivor Processing

A Thesis
Presented to

The Academic Faculty

by

Piya Kovintavewat

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Electrical and Computer Engineering
Georgia Institute of Technology

October 2004

Timing Recovery

Based on Per-Survivor Processing

Approved by:

Dr. John R. Barry, Advisor

Dr. Steven W. McLaughlin

Dr. Gordon L. Stüber

Dr. Mark A. Clements

Dr. Thomas D. Morley

Date Approved: 13 October 2004

To Punnee, Kiat,

and others in my beloved family.

iii

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude to my advisor, Dr. John R.

Barry, for granting me with the wonderful opportunity to do this interesting research

work, for triggering many ideas that this thesis is built upon, for providing invaluable

expertise, and for supporting me during my stay at GaTech. He always makes me feel

welcome to discuss both research and other issues. His clear explanations on technical

matters have proven to be of great assistance in my research work and made this thesis

complete.

Next, I would like to thank Dr. Steven W. McLaughlin, Dr. Gordon L. Stüber,

Dr. Mark A. Clements, and Dr. Thomas D. Morley for serving on my defense com-

mittee. I am also grateful for the help of the staff at the School of Electrical and

Computer Engineering and at GCATT, especially Dr. David R. Hertling, Marilou

Marilou, Cordai Farrar, and Suzzette E. Willingham.

I would also like to thank Seagate Technology, Pittsburgh, PA, USA, for giving me

work experiences in the summers of 2001, 2002, and 2004. Many discussions, espe-

cially with Dr. M. Fatih Erden, Dr. Inci Ozgunes, Dr. Erozan M. Kurtas, Dr. Jongse-

ung Park, Dr. Alexander V. Kuznetsov, Dr. Walter R. Eppler, and Dr. Xueshi Yang

have been invaluable and stimulating.

My family has always given me strong support and encouragement in my studies

and in other aspects of my life. I would like to thank everyone in my family, especially

my parents (Punnee and Kiat). They have always taught me to be patient, diligent,

concentrated, and cheerful. I would also like to thank the Thai government for its

financial support during my Ph.D. study.

Special thanks are also given to Aravind, Badri, Pornchai, Joon, Renato, and

iv

others in the Communications and Information Theory Laboratory at GaTech. These

people had engaged me in many discussions and helped bring understanding to many

research questions. Finally, I would like to thank all my friends for supporting and

encouraging me throughout my stay at GaTech.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xvi

CHAPTER 1 INTRODUCTION . 1

1.1 Uncoded Systems . 2

1.2 Coded Systems . 4

1.3 Organization . 7

CHAPTER 2 BASICS OF TIMING RECOVERY 9

2.1 Introduction . 9

2.2 Conventional Timing Recovery . 10

2.3 Design of PLL Gain Parameters . 13

2.3.1 Linear Analysis of First-Order PLL 13

2.3.2 Linear Analysis of Second-Order PLL 17

2.3.3 Finding the S-curve . 18

2.4 Performance of Conventional Timing Recovery 22

2.5 Summary . 25

CHAPTER 3 PER-SURVIVOR TIMING RECOVERY FOR UN-
CODED PARTIAL RESPONSE CHANNELS 26

3.1 Introduction . 26

3.2 System Description . 27

3.3 PSP-Based Timing Recovery . 28

3.3.1 PSP-MM Algorithm . 28

3.3.2 New Timing Error Detector 31

3.3.3 Note on Conventional Timing Recovery 33

vi

3.4 Numerical Results and Discussion 34

3.5 Convergence Behavior . 37

3.6 Reduced-Complexity PSP-Based Timing Recovery 39

3.6.1 The M-algorithm . 40

3.6.2 The T-algorithm . 41

3.6.3 Performance Comparison . 41

3.7 Summary . 43

CHAPTER 4 PER-SURVIVOR ITERATIVE TIMING RECOVERY
FOR CODED PARTIAL RESPONSE CHANNELS 44

4.1 Introduction . 44

4.2 Prior Work . 45

4.2.1 Channel Model . 46

4.2.2 Optimal Adaptive SISO Algorithm 47

4.2.3 Suboptimal Adaptive SISO Algorithm 49

4.2.4 Note on the Adaptive SISO Algorithm 50

4.3 System Description . 51

4.4 Review of the NBM scheme . 53

4.5 PSP-BCJR . 54

4.5.1 Forward Recursion . 55

4.5.2 Backward Recursion . 57

4.5.3 Complexity of PSP-BCJR 59

4.6 Numerical Results and Discussion 60

4.6.1 Complexity Versus Performance 65

4.7 Reduced-Complexity PSP-BCJR . 69

4.7.1 The M-algorithm . 69

4.7.2 The T-algorithm . 69

4.7.3 Performance Comparison . 70

4.7.4 Note on Complexity Reduction of PSP-BCJR 70

4.8 Extrinsic Information Transfer (EXIT) Chart 72

vii

4.8.1 EXIT Chart for Iterative Timing Recovery 73

4.8.2 Simulation Setup . 74

4.8.3 Predicted Bit-Error Rate . 76

4.8.4 Performance Comparison . 77

4.9 Exploring Per-Survivor Iterative Timing Recovery 81

4.10 Summary . 88

CHAPTER 5 APPLICATIONS TO MAGNETIC RECORDING SYS-
TEMS . 90

5.1 Background on Digital Magnetic Recording Systems 90

5.1.1 Write Process . 91

5.1.2 Read Process . 92

5.1.3 Magnetic Recording Channel Model 94

5.2 Equalization and Target Design . 95

5.2.1 MMSE Target Design . 98

5.2.2 Effective SNR . 99

5.2.3 Numerical Results and Discussion 100

5.2.4 Summary . 107

5.3 Timing Recovery for Fast Convergence 109

5.3.1 System Description . 110

5.3.2 Incorporating the Equalizer in PSP-Based Timing Recovery . 111

5.3.3 Numerical Results and Discussion 113

5.3.4 Summary . 117

5.4 Iterative Timing Recovery . 118

5.4.1 System Description . 118

5.4.2 Numerical Results and Discussion 119

5.4.3 Summary . 125

CHAPTER 6 CONCLUSION . 126

6.1 Summary . 126

6.2 Future Work . 128

viii

APPENDIX A — DERIVATION OF THE STARTING STATE AS-
SOCIATED WITH THE BEST STATE TRANSITION 130

APPENDIX B — DERIVATION OF THE STARTING STATE AS-
SOCIATED WITH THE BEST BACKWARD STATE TRANSI-
TION . 132

REFERENCES . 134

VITA . 141

ix

LIST OF TABLES

Table 1 The total number of operations of each module that is used in iter-
ative timing recovery schemes. 60

Table 2 The total number of operations of each iterative timing recovery
scheme for a coded PR-IV channel. 66

Table 3 Soft estimate computation for a PR-IV channel based on (41). . . . 84

Table 4 Error sequences for different targets and σj/T ’s at ND = 2.5 and
BER = 10−4. 104

Table 5 Error event characterization of the PR2 and GPR5 targets at ND =
2.5 and σj/T = 0%. 105

Table 6 5-tap GPR targets for different systems. 113

Table 7 PLL gain parameters for longitudinal recording for the 5-tap GPR
target. 114

Table 8 PLL gain parameters for perpendicular recording for the 5-tap GPR
target. 115

Table 9 PLL gain parameters for the 3-tap GPR target for different system
conditions. 120

Table 10 The total number of operations of each iterative timing recovery
scheme used in magnetic recording systems. 122

x

LIST OF FIGURES

Figure 1 Front-end receiver structures for uncoded systems: (a) conventional
receiver and (b) PSP-based timing recovery. 2

Figure 2 Front-end receiver structures for coded systems: (a) conventional re-
ceiver, (b) NBM scheme, and (c) per-survivor iterative timing recovery. 4

Figure 3 Deductive (or feed-forward) timing recovery. 10

Figure 4 The perfectly equalized channel model with inductive (feedback)
timing recovery. 10

Figure 5 Maximum value of ξ satisfying the system stability for different loop
delays. 14

Figure 6 (a) ξC ’s satisfying the system stability and the convergence rate of C
samples for different delays, and (b) the system step responses using
ξ100 for the delays ranging from 0 to 30T 15

Figure 7 (a) The system step responses and (b) the error responses with dif-
ferent ξ’s for d = 14. 16

Figure 8 Maximum magnitude of E(z) after C samples using d = 14 and ξC . 18

Figure 9 S-curves of the M&M TED for a PR-IV channel based on conven-
tional timing recovery with instantaneous decision. 20

Figure 10 An example of a cycle slip. 21

Figure 11 (a) RMS timing jitter σε/T and (b) BER performances as a function
of Eb/N0’s for the perfectly equalized PR-IV channel with different
σw/T ’s (without frequency offset). 23

Figure 12 BER performance of conventional timing recovery for the perfectly
equalized PR-IV channel with σw/T = 0.5% and 0.2% frequency offset. 24

Figure 13 PSP-MM algorithm, where the lines beginning with * are the addi-
tional steps beyond the conventional Viterbi algorithm. 29

Figure 14 The PR-IV trellis structure explaining how PSP-MM performs. . . 30

Figure 15 The mean and the standard deviation of different TEDs used in
PSP-based timing recovery for a PR-IV channel at Eb/N0 = 10 dB. 33

Figure 16 Performance comparison of PSP-based timing recovery with different
TEDs (a) as a function of Eb/N0’s and (b) as a function of ξ’s at
Eb/N0 = 8 dB. 35

Figure 17 Performance comparison of different timing recovery schemes. . . . 36

xi

Figure 18 Timing estimate plots of (a) conventional timing recovery with hard
decision (d = 0), (b) conventional timing recovery with tentative
decision (d = 4), (c) PSP-MM (d = 0), and (d) a genie-aided detector
(d = 0), at Eb/N0 = 10 dB based on 50 runs. 38

Figure 19 Percentage of convergence of different timing recovery schemes at
Eb/N0 = 10 dB based on 50000 runs. 39

Figure 20 BER performance of different timing recovery schemes using the PLL
gain parameters designed for different C’s for systems with σw/T =
0.5% and 0.2% frequency offset. 40

Figure 21 (a) BER and (b) the average number of search states performances as
a function of Eb/N0’s of PSP-MM with different reduced-complexity
approaches for a PR-IV channel with σw/T = 0.5%. 42

Figure 22 An equivalent discrete-time channel model. 46

Figure 23 Likelihood computation for forward and backward recursions [1]. . 49

Figure 24 Data encoding with the precoded PR-IV channel model. 52

Figure 25 A conventional receiver architecture. 52

Figure 26 An NBM architecture. 53

Figure 27 PSP-BCJR algorithm, where the lines beginning with * are the ad-
ditional steps beyond the conventional BCJR algorithm. 56

Figure 28 The PR-IV trellis structure demonstrating how PSP-BCJR performs
during forward recursion. 57

Figure 29 The PR-IV trellis structure illustrating how PSP-BCJR performs
during backward recursion. 58

Figure 30 Performance comparison of different iterative timing recovery schemes
for (a) σw/T = 0.5% and (b) σw/T = 1%. 61

Figure 31 Convergence rate of different iterative timing recovery schemes at
Eb/N0 = 5 dB and σw/T = 1%. 63

Figure 32 Probability of an uncorrected cycle slip at Eb/N0 = 5 dB and σw/T =
1%. 64

Figure 33 Cycle slip correction for two different sample packets at Eb/N0 = 5
dB and σw/T = 1%. 65

Figure 34 Complexity comparison of different iterative timing recovery schemes
for Nsinc = 21, Q = 4, and S = 16. 67

xii

Figure 35 BER performance of different iterative timing recovery schemes when
they approximately have the same complexity for system with (a)
σw/T = 0.5% and (b) σw/T = 1%. 68

Figure 36 Performance comparison of per-survivor iterative timing recovery
with different reduced-complexity approaches at the 10-th iteration
with σw/T = 0.5%. 71

Figure 37 A system model for the EXIT chart analysis. 73

Figure 38 Simulation setup for generating the mutual information transfer char-
acteristics of the conventional receiver for (a) the decoder and (b)
the equalizer. 75

Figure 39 Simulation setup for generating the equalizer transfer characteristic
of the NBM scheme. 75

Figure 40 (a) The mutual information transfer characteristics of different it-
erative timing recovery schemes and (b) their corresponding BER
curves at Eb/N0 = 5 dB and σw/T = 0.5%. 78

Figure 41 System trajectories of different iterative timing recovery schemes at
Eb/N0 = 5 dB and σw/T = 0.5%, where the solid lines are based on
the coded block length of 4095 bits, and the dashed lines are based
on the coded block length of 20475 bits. 80

Figure 42 (a) The mutual information transfer characteristics of different it-
erative timing recovery schemes and (b) their corresponding BER
curves at Eb/N0 = 5 dB and σw/T = 1%. 81

Figure 43 Eb/N0 (in dB) required to achieve BER = 10−4 at the decoder output
at the 2-nd iteration as a function of σw/T ’s. 82

Figure 44 Percentage of occurrence of a cycle slip for an uncoded PR-IV chan-
nel at Eb/N0 = 5 dB. 83

Figure 45 Probability of an uncorrected cycle slip as a function of the mutual
information of the a priori information of the SISO equalizer input
(σw/T = 1% and Eb/N0 = 5 dB). 84

Figure 46 Error positions at each iteration for (a) the NBM scheme and (b) per-
survivor iterative timing recovery at Eb/N0 = 5 dB and σw/T = 1%. 86

Figure 47 Percentage of occurrence of a cycle slip as a function of σw/T ’s for
the precoded PR-IV channel at Eb/N0 = 5 dB. 87

Figure 48 Schematic principle of magnetic recording. 91

Figure 49 Transition responses for (a) longitudinal and (b) perpendicular record-
ing. 93

xiii

Figure 50 Frequency responses of the dibit responses for (a) longitudinal and
(b) perpendicular recording. 95

Figure 51 A realistic magnetic recording channel model. 96

Figure 52 Frequency responses of different targets for (a) longitudinal and (b)
perpendicular recording channels. 97

Figure 53 MMSE target design. 98

Figure 54 (a) Required electronics SNR vs. ND without media jitter noise, and
(b) required electronics SNR vs. σj/T at ND = 2.5. 102

Figure 55 Noise correlation of different targets at the input of the Viterbi de-
tector for ND = 2.5, σj/T = 0%,and SNR = 22 dB. 103

Figure 56 (a) BER and (b) SNReff performances of the GPR5 target at ND =
2.5. 106

Figure 57 (a) BER vs. SNReff and (b) BER vs. Electronics SNR of different
targets with various σj/T ’s at ND = 2.5. 108

Figure 58 Diagram of different timing recovery schemes. 110

Figure 59 Magnetic recording channel model. 110

Figure 60 PSP-based timing recovery algorithm with a T/N -spaced equalizer,
where the lines beginning with * are the additional steps beyond the
conventional receiver. 112

Figure 61 BER performance of different timing recovery schemes for longitu-
dinal recording using ξ and κ designed for C=256. 115

Figure 62 BER performance of different timing recovery schemes for longitu-
dinal recording using ξ and κ designed for (a) C = 100 and (b) C =
50. 116

Figure 63 BER performance of different timing recovery schemes for perpen-
dicular recording using ξ and κ designed for (a) C = 100 and (b) C
= 50. 117

Figure 64 A magnetic recording channel model with a conventional receiver. . 119

Figure 65 BER performance of different iterative timing recovery schemes for
(a) longitudinal recording and (b) perpendicular recording at ND =
2, σw/T = 0.5%, σj/T = 3%, and 0.4% frequency offset. 121

Figure 66 BER performance of different iterative timing recovery schemes with
the same complexity for (a) longitudinal recording and (b) perpen-
dicular recording channels at ND = 2 with σw/T = 0.5%, σj/T =
0.3%, and 0.4% frequency offset. 123

xiv

Figure 67 SNR required to achieve BER = 10−4 (in dB) versus ND of different
iterative timing recovery schemes with the same complexity for (a)
longitudinal recording and (b) perpendicular recording channels with
σw/T = 0.5%, σj/T = 0.3%, and 0.4% frequency offset. 124

xv

SUMMARY

At some point in a digital communications receiver, the received analog signal

must be sampled. Sampling at the wrong times can have a devastating impact on

performance. The process of synchronizing the sampler with the received analog

signal is known as timing recovery. Conventional timing recovery techniques are

based on a decision-directed phase-locked loop (PLL). They are adequate only when

the operating signal-to-noise ratio (SNR) is sufficiently high, but recent advances in

error-control coding have made it possible to communicate reliably at very low SNR,

where conventional techniques fail. This thesis develops new techniques for timing

recovery that are capable of working at low SNR.

We propose a new timing recovery scheme based on per-survivor processing (PSP),

which jointly performs timing recovery and equalization, by embedding a separate

decision-directed PLL into each survivor of a Viterbi algorithm. The proposed scheme

is shown to perform better than conventional timing recovery, especially when the

SNR is low and the timing error is large. An important advantage of this technique

is its amenability to real-time implementation.

We also propose a new iterative timing recovery scheme that exploits the presence

of the error-control code; in doing so, it can perform even better than the PSP scheme

described above, but at the expense of increased complexity and the requirement

of batch processing. The proposed iterative timing recovery scheme is realized by

embedding the timing recovery process into a trellis-based soft-output equalizer using

PSP. Then, this module iteratively exchanges soft information with the error-control

decoder, as in conventional turbo equalization. The resulting system jointly performs

the functions of timing recovery, equalization, and decoding. The proposed iterative

xvi

timing recovery scheme is shown to perform better than previously reported iterative

timing recovery schemes, especially when the timing error is severe.

Performance analysis of iterative timing recovery schemes is difficult because of

their high complexity. We propose to use the extrinsic information transfer (EXIT)

chart as a tool to predict and compare their performances, considering that the bit-

error rate computation takes a significant amount of simulation time. Experimental

results indicate that the system performance predicted by the EXIT chart coincides

with that obtained by simulating data transmission over a complete iterative receiver,

especially when the coded block length is large.

Finally, we investigate the performance of the proposed timing recovery schemes

in a magnetic recording system. This system is considered because magnetic record-

ing is a primary method of storage for a variety of applications, including desktop,

mobile, and server systems. This experiment will help us decide whether or not the

proposed schemes are worth being employed in real-life applications, if compared to

the conventional schemes used in today’s magnetic recording read-channel chip ar-

chitectures. Simulation results show that the proposed schemes perform better and

achieve higher storage capacity than conventional schemes.

xvii

CHAPTER 1

INTRODUCTION

At some point in a digital communications receiver, the received analog signal must be

sampled before performing equalization and decoding. Sampling at the wrong times

can have a devastating impact on overall performance. The process of synchronizing

the sampler with the received analog signal is known as timing recovery. Note that, in

this work, we focus only on the problem of synchronization in baseband transmission

systems. As a consequence, we do not consider carrier recovery in this work.

To facilitate timing recovery, a clock signal may be sent separately from the data

signal, thus increasing the bandwidth, transmitted power, and so forth. To avoid

these inefficiencies, it is customary to recover the clock from the data signal itself,

which is referred to as self-timing [9]. This method relies primarily on the timing

information present in the received data signal. As the received data signal practi-

cally undergoes many kinds of impairments, such as timing offset1, frequency offset2,

additive noise, etc., the amount of timing information embedded in the received data

signal tends to be decreased. Furthermore, since most timing recovery schemes are

based on a decision-directed phase-lock loop (PLL) [9], the performance of timing

recovery is then a strong function of the reliability of decisions, and hence, of the

operating signal-to-noise ratio (SNR). This implies that timing recovery at low SNR

is even more difficult. Thus, the need for efficient timing recovery schemes becomes

increasingly important because improving the performance of timing recovery will

1Timing offset happens when the actual and the expected arrival times of the k-th pulse do not
coincide.

2Frequency offset occurs when the transmitted and the receiver clock frequencies differ from each
other by a fraction of a percent.

1

Joint Timing Recovery
& Equalization

Timing Recovery Equalization

(a) Conventional receiver (b) PSP-based timing recovery

Figure 1: Front-end receiver structures for uncoded systems: (a) conventional re-
ceiver and (b) PSP-based timing recovery.

give rise to improved reliability of an entire system. Therefore, in this work, we focus

on developing new timing recovery schemes that perform better than conventional

schemes for the systems with and without error-correction codes (ECCs).

1.1 Uncoded Systems

For systems without ECCs (i.e., uncoded systems), the receiver performs two main

tasks, namely, timing recovery and equalization. The former is usually performed by

conventional timing recovery, which takes the form of a PLL, whereas the latter is

practically performed by a Viterbi detector [24].

Theoretically, joint maximum-likelihood (ML) estimation of the timing offset and

the data sequence is a preferred method of synchronization [48] but its complexity

is huge. Georghiades and Snyder [27] applied the expectation-maximization (EM)

algorithm to jointly estimate the timing offset and the data sequence in the case of a

constant timing offset with an ideal, uncoded system without intersymbol interference

(ISI). However, this method is still complicated. In practice, a conventional receiver

performs timing recovery and ML equalization separately, as depicted in Figure 1(a).

Specifically, conventional timing recovery is based on a PLL that relies on the decision

provided by its own symbol detector, which can be either a Viterbi detector with a

short decision delay or a memoryless multi-level slicer. Nevertheless, the Viterbi de-

tector has a fundamental trade-off between reliability and the decision delay, whereas

the memoryless multi-level slicer might yield an unreliable decision.

2

To improve the performance of conventional timing recovery, a reliable decision

with zero decision delay can be extracted by utilizing the already-given information

inside the trellis structure [24]. Specifically, each state transition in the trellis uniquely

specifies a corresponding symbol. Thus, at least one state transition in each trellis

stage will correspond to a correct decision. Utilizing that decision for the timing

update operation will improve the performance of timing recovery. The idea of using

the information available in the trellis to estimate other unknown parameters is known

as per-survivor processing (PSP) [65].

PSP is a technique of jointly estimating a data sequence and unknown parame-

ters, such as channel coefficients, the carrier phase, and so on. It was first used in the

application of reduced-state sequence estimation [22]. The general PSP concept and

its various applications were later introduced by Raheli, Polydoros, and Tzou [65].

PSP has been employed in many applications, including channel identification, adap-

tive ML sequence detection, and phase/carrier recovery [4, 13, 18, 21, 41, 65, 66, 83].

In addition, Iltis [31] utilized the PSP concept in conjunction with the extended

Kalman filter to jointly estimate the timing offset and the data sequence in the case

of a constant timing offset with the ISI channel, but this method is too complex.

In this work, we propose a new timing recovery scheme based on PSP, denoted as

PSP-based timing recovery [36], for uncoded partial response (PR) [81] channels. The

proposed scheme jointly performs timing recovery and ML equalization, as shown in

Figure 1(b). Unlike the method proposed in [31], our scheme has lower complexity

and can also deal with time-varying timing offsets. Simulation results indicate that for

low to moderate SNRs, PSP-based timing recovery performs better than conventional

timing recovery, especially when the timing jitter is severe or when operating in a

system that requires fast convergence.

3

Timing Recovery

Equalization

Decoding

Joint Timing Recovery
& Equalization

Decoding

Timing Recovery Equalization Decoding

(a) Conventional receiver

(b) NBM scheme
(c) Per-survivor
 iterative timing recovery

Figure 2: Front-end receiver structures for coded systems: (a) conventional receiver,
(b) NBM scheme, and (c) per-survivor iterative timing recovery.

1.2 Coded Systems

Iterative ECCs, such as turbo codes [10] and low-density parity-check (LDPC) codes

[26], allow reliable operation at low SNR because of their large coding gains [10, 30,

86]. Furthermore, the principle of iterative decoding can also be extended to include

equalization, which is commonly known as turbo equalization [67, 79]. This means

that timing recovery must also function at SNR lower than ever before. Note that

lower SNR is a desirable property because it helps reduce the cost of operation, and

in magnetic recording systems for example, allows for higher storage capacity.

Generally, the decisions from the ECC decoder are more reliable than those from

the PLL, but the decoding process usually introduces a large decision delay. At high

SNR, we can afford to use the decisions from the PLL in order to avoid a large decision

delay. Nonetheless, at low SNR, we need to exploit the presence of ECCs so as to

have reliable decisions for timing recovery. Although this will be more complex and

introduce a large decision delay, it should provide better performance. That is why a

conventional receiver, which performs timing recovery and error-correction decoding

separately, as depicted in Figure 2(a), fails to work properly at low SNR.

4

Theoretically, joint ML estimation of the timing offset and the data sequence,

which jointly performs timing recovery, equalization, and error-correction decoding,

is a preferred method of synchronization [48], but its complexity is problematic. A

solution based on the EM algorithm [27, 57] is also complex. Fortunately, a solution

to this problem with complexity comparable to the conventional receiver has been

proposed by Nayak, Barry, and McLaughlin [56], which will be referred to as the

NBM scheme, as shown in Figure 2(b). The NBM scheme is realized by embedding

the timing recovery step inside the turbo equalizer [67, 75] so as to perform timing re-

covery, equalization, and error-correction decoding jointly. The key idea of the NBM

scheme is as follows. At each turbo iteration, the turbo equalizer will produce the

decisions that are more reliable than the decisions from the PLL. These better deci-

sions are fed back to the timing recovery unit to improve the timing estimates. Then,

the new timing estimates are used to refine the samples. These better samples will

be employed to improve the performance of the turbo equalizer in the next iteration.

This process repeats as many iterations as needed. In summary, the turbo equalizer

benefits from better samples, and timing recovery benefits from better decisions.

At high SNR, the decisions provided by a symbol detector used in a PLL are

reliable enough for the timing recovery unit to perform well. Thus, the conventional

receiver is sufficient to be used in a system operating at high SNR because of its

simplicity. On the other hand, at low SNR and moderate to severe timing offset

models, timing recovery is very difficult because of the phenomenon called a cycle

slip [9]. When a cycle slip occurs, the receiver adds or drops symbols, and this causes

a burst of errors in data detection process. In the presence of a cycle slip, the ECC

decoder usually fails to decode. This explains why the conventional receiver does

not perform well at low SNR. However, the NBM scheme has the ability to correct

a cycle slip [7, 55, 56]. In fact, when a cycle slip occurs, the timing recovery unit

does not suddenly add or drop symbols. Instead, it gradually loses track of the actual

5

timing offset until it settles down at the offset corresponding to multiples of symbol

durations. Therefore, as iterations increase, the area of the boundary zone between

the actual timing offset and the multiple symbol offset decreases, and this boundary

moves towards the end of the data packet [55]. In other words, the portion of the

data packet affected by a cycle slip gradually reduces and, eventually, disappears.

To reduce the number of iterations needed to correct a cycle slip, some simple cycle

slip detection and correction algorithms have been proposed in [55, 56]. Although

the NBM scheme outperforms the conventional receiver [7, 55, 56], it requires a large

number of iterations to provide a good performance even with a cycle slip detection

and correction algorithm as used in [56], especially when the timing error is severe.

To improve the performance of the NBM scheme, we propose a new iterative tim-

ing recovery scheme based on PSP, which will be referred to as per-survivor iterative

timing recovery [35], for coded PR channels. The proposed scheme will jointly per-

form timing recovery, equalization, and error-correction decoding, as illustrated in

Figure 2(c). It is realized by first developing a per-survivor Bahl, Cocke, Jelinek,

and Raviv (BCJR) [5] equalizer, denoted as “PSP-BCJR,” by embedding the timing

recovery step inside the BCJR equalizer based on PSP. Then, per-survivor iterative

timing recovery iteratively exchanges soft information between PSP-BCJR and an

error-correction decoder. It will be shown in simulation that per-survivor iterative

timing recovery provides a significant performance improvement over other iterative

timing recovery schemes [35], especially when the timing jitter is large. This is be-

cause per-survivor iterative timing recovery can automatically correct a cycle slip

much more efficiently than other schemes.

Since performance analysis of iterative timing recovery [7] schemes is difficult

because of their complexity, a time-consuming simulation in terms of the bit-error rate

(BER) is usually a solution to compare their performances. The extrinsic information

transfer chart (EXIT chart) was proposed by ten Brink [80] as a tool for predicting

6

the convergence behavior of turbo codes. In this work, we propose to use the EXIT

chart as a tool to predict and compare the performance of iterative timing recovery

schemes [34] since the BER computation takes a considerable amount of simulation

time. Simulation results show that the system performance predicted by the EXIT

chart coincides with that obtained by simulating data transmission over a complete

iterative receiver, especially when the coded block length is large.

Because timing recovery is closely related to carrier recovery, there are many

recent works that utilize an iterative concept to estimate a constant carrier phase

[1, 2, 3, 11, 14, 43, 44, 49, 58, 60, 76, 84, 88]. However, no previous work applied the

PSP concept in iterative detection to solve the problem of timing recovery.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 briefly describes how con-

ventional timing recovery, which is based on a PLL, works. The method of designing

the PLL gain parameters based on a linearized model of PLL is also given. It will

be shown in simulation that for low to moderate SNRs, conventional timing recovery

does not perform well, especially when the timing error is large or when operating in

a system that requires fast convergence.

The PSP-based timing recovery scheme is proposed in Chapter 3 for uncoded PR

channels so as to improve the performance of conventional timing recovery without

exploiting the presence of ECCs. Its architecture is fully explored and its performance

is compared with conventional timing recovery. The convergence behavior of different

timing recovery schemes is studied, which indicates that PSP-based timing recovery

can achieve faster convergence than conventional timing recovery. Then, a reduced-

complexity version of PSP-based timing recovery will be given and investigated.

Chapter 4 deals with the problem of timing recovery operating at low SNR. In

this case, we consider coded PR channels. It will be shown through simulation that

7

the conventional receiver, which performs timing recovery and error-correction de-

coding separately, does not perform well at low SNR. To solve this problem, we

propose per-survivor iterative timing recovery for coded PR channels. The perfor-

mance comparison among different iterative timing recovery schemes is provided. A

reduced-complexity version of per-survivor iterative timing recovery is also given and

investigated. Since performance analysis of iterative timing recovery schemes is dif-

ficult because of their complexity, we explain how to use the EXIT chart analysis

instead of BER to predict and compare their performances.

Chapter 5 is devoted to the application of magnetic recording systems. This ap-

plication is considered because magnetic recording is a primary method of storage

for a variety of applications, including desktop, mobile, and server systems. Timing

recovery in magnetic recording systems is an increasingly critical problem because of

the growing data rate to be supported. Improving the performance of timing recovery

gives rise to improved reliability of an entire recording system, which in turn results in

an increased storage capacity. Hence, this experiment will help us decide whether or

not the proposed timing recovery schemes are worth being employed in real-life appli-

cations, if compared to the conventional schemes used in today’s magnetic recording

read-channel chip architectures. This chapter begins with briefly reviewing the back-

ground of magnetic recording systems. A realistic magnetic recording channel model,

which represents all the components that are employed in magnetic recording chan-

nels, is introduced. The method of designing the target3 [9, 53] and its corresponding

equalizer is also given. Then, the proposed timing recovery schemes will be inves-

tigated and compared with conventional schemes, based on the realistic magnetic

recording channel model with and without ECCs. Finally, Chapter 6 contains the

conclusion of the thesis and possibilities for further research.

3A linear filter with a small number of taps that is designed to closely match the overall channel
impulse response as much as possible without excessive noise enhancement.

8

CHAPTER 2

BASICS OF TIMING RECOVERY

This chapter briefly reviews the concept of timing recovery and explains how con-

ventional timing recovery that is based on a PLL works. A method of designing the

PLL gain parameters based on a linearized model of PLL is given. It will be shown

in simulation that for low to moderate SNRs, conventional timing recovery does not

perform well in uncoded systems, especially when the timing error is large or when

operating in a system that requires fast convergence.

2.1 Introduction

Timing recovery is the process of synchronizing the sampler with the received ana-

log signal. Sampling at the wrong times can have a devastating impact on overall

performance. Therefore, the quality of synchronization is very important.

Most practical timing recovery schemes are based on a PLL [9], which consists of a

timing error detector (TED), a loop filter, and a voltage-controlled oscillator (VCO).

Typically, there are two configurations of timing recovery, namely, deductive and

inductive timing recovery schemes [9], depending on whether the timing information

is extracted before or after the sampler. Deductive timing recovery directly extracts

the timing tone [8] from the incoming signal before the sampler, as shown in Figure 3,

where a PLL is used to reduce the effect of timing jitter [8]. Inductive timing recovery,

on the other hands, employs a feedback loop using a PLL to extract the timing

information, as depicted in Figure 4. The key advantage of inductive timing recovery

is that it can be implemented digitally.

In this work, only inductive timing recovery is considered, which will be referred

9

TED Loop
filter

VCO

kk kTt τ̂+=

Timing
tone

detector

To data
detection

kyReceived signal
y(t)

Figure 3: Deductive (or feed-forward) timing recovery.

)ˆ(kk kTyy τ+=

Symbol
detector

TED

dkr −ˆ

kε̂

kk kTt τ̂+=
dz−

dky −

H(D)

n(t)

ka y(t)
kτ LPF

p(t)

D−
+

1
κξ

D

D

−1

Loop filterVCO

q(t)kr Viterbi
detector

kâ

Figure 4: The perfectly equalized channel model with inductive (feedback) timing
recovery.

to as conventional timing recovery. A reader interested in deductive (or feed-forward)

timing recovery can refer to [64] for a brief discussion.

2.2 Conventional Timing Recovery

Consider the perfectly equalized channel model (also referred to as an ideal channel

model) shown in Figure 4. An input data sequence ak ∈ {±1} with bit period T

is filtered by the channel represented by H(D) =
∑ν

k=0 hkD
k, where hk is the k-th

channel coefficient, D is the delay operator, and ν is channel memory. The readback

signal, p(t), can then be written as

p(t) =
∑
k

rkq(t − kT − τk) + n(t), (1)

10

where rk =
∑

i ak−ihi is the noiseless channel output, q(t) = sin(πt/T)/(πt/T) is an

ideal zero-excess-bandwidth Nyquist pulse [8], τk is the k-th unknown timing offset,

and n(t) is additive white Gaussian noise (AWGN) with two-sided power spectral

density N0/2. Unless otherwise specified, the timing offset τk used throughout this

work is modeled as a random walk [4] according to

τk+1 = τk + wk, (2)

where wk is an independent and identically distributed (i.i.d.) zero-mean Gaussian

random variable with variance σ2
w, i.e., wk ∼ N (0, σ2

w), and σw determines the severity

of the timing jitter. The random walk model is chosen because of its simplicity and

its ability to represent a variety of channels by changing only one parameter.

At the front-end receiver, the readback signal is filtered by a low-pass filter1 (LPF),

whose impulse response is q(t)/T (i.e., a cutoff frequency is at 1/(2T)), to eliminate

the out-of-band noise and is then sampled at time kT + τ̂k, creating

yk = y(kT + τ̂k) =
∑

i

riq(kT + τ̂k − iT − τi) + nk, (3)

where τ̂k is an estimate of τk (or the k-th sampling phase offset), and nk is an i.i.d.

zero-mean Gaussian random variable with variance σ2
n = N0/(2T), i.e., nk ∼ N (0, σ2

n).

A decision-directed TED [9] is used to compute the receiver’s estimate of the

timing error εk = τk− τ̂k, which is the misalignment between the phase of the received

signal and that of the sampling clock. Several TED algorithms have been proposed in

the literature [9, 46], depending on how they incorporate the information available at

the TED input. Typically, the overall performance of timing recovery is dominated

by the effectiveness of the TED. In this work, we consider the well-known Mueller

and Müller (M&M) TED algorithm [54], where the estimated timing error is given

1For a perfect bandlimited system where all of the signal energy is confined within the |f | ≤
1/(2T) band, a low-pass filter also provides the sufficient statistic [52] as a matched filter [8] does.

11

by

ε̂k = KT{ykr̂k−1 − yk−1r̂k}, (4)

where r̂k is an estimate of rk. The constant KT is used to ensure that there is no bias

at high SNR so that E[ε̂k|ε] = ε (or, in other words, the slope of the S-curve [9] is

unity at the origin). As shown in (4), the TED performance depends on the decisions

{r̂k}. Therefore, timing recovery performance is a strong function of the reliability

of decisions and hence of the operating SNR. This explains why the symbol detector

used in the timing loop is a Viterbi detector with a short decision delay, dT , instead

of a memoryless multi-level slicer in most real-life applications [15].

Next, the estimated timing error ε̂k is filtered by a loop filter to eliminate the

noise in the timing error signal. Then, the next sampling phase offset is updated by

a second-order PLL according to [9]

θ̂k+1 = θ̂k + κε̂k, (5)

τ̂k+1 = τ̂k + ξε̂k + θ̂k+1, (6)

where θ̂k represents an estimate of frequency error [15], and ξ and κ are the PLL gain

parameters [9], which determine the loop bandwidth and the rate of convergence. The

larger the value of PLL gain parameters, the larger the loop bandwidth, the faster the

convergence rate, and thus the more the noise allowed to perturb the system. Note

that a first-order PLL can only handle phase error, not frequency error. A first-order

PLL update equation is easily obtained by setting κ = 0 in (5).

In practice, timing recovery is performed in two modes, namely, acquisition and

tracking modes. An acquisition mode is performed at the beginning of the data

sector with the aid of a known data pattern called a preamble [15] (or a training

sequence) to acquire the initial phase and frequency estimates. Hence, a tracking

mode is performed using the samples corresponding to transmitted unknown data so

as to refine these initial estimates. Since the preamble is known at the receiver, large

12

values of ξ and κ can be used to expedite the convergence rate. However, the values

of ξ and κ should be lowered during tracking mode so as to reduce the effect of the

noise [71]. Therefore, designers must tradeoff between the loop bandwidth and the

convergence rate when designing ξ and κ.

2.3 Design of PLL Gain Parameters

From the simulation point of view, the best way to choose the PLL gain parameters

(both ξ and κ) is to optimize them based on minimizing the BER at the detector

output. Nevertheless, this method is impractical and time-consuming. Instead, one

usually designs ξ and κ based on a linearized model of PLL [9]. One possible criterion

is to choose ξ and κ so that the system response can catch a phase and/or frequency

change in the system within “C” samples (or bit periods). It should be noted that

this criterion can also be viewed as the rate of convergence, i.e., the smaller the C,

the faster the convergence rate.

2.3.1 Linear Analysis of First-Order PLL

A first-order PLL is of restricted practical interest because it can only handle phase

error, not frequency error. Nonetheless, its analysis is a good start for understanding

a higher-order PLL. In this analysis, the phase error is modeled as a step function

according to τk = T for k ≥ 0, and τk = 0 for k < 0.

Consider a first-order PLL update equation, which is given by

τ̂k+1 = τ̂k + ξε̂k−d, (7)

where d is a normalized delay (with respect to T) in the timing loop, ε̂k = εk + vk

is the estimated timing error, εk = τk − τ̂k is the residual timing error, and vk is the

noise in the TED. By assuming that vk is negligible, the system transfer function of

(7) can be obtained by taking the Z-transform [8], i.e.,

G(z) =
Γ̂(z)

Γ(z)
=

ξz−(d+1)

1 − z−1 + ξz−(d+1)
, (8)

13

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ξ
 (

P
LL

 g
ai

n
pa

ra
m

et
er

)

Normalized loop delay, d

ξ
max

Figure 5: Maximum value of ξ satisfying the system stability for different loop
delays.

where Γ̂(z) and Γ(z) are the Z-transform of τ̂k and τk, respectively. Accordingly, the

error transfer function (Z-transform of εk) can be written as

E(z) = Γ(z) − Γ̂(z) =
1 − z−1

1 − z−1 + ξz−(d+1)
· Γ(z). (9)

One possible criterion that may be used to choose ξ is to pick the one that satisfies

both the system stability and the convergence rate, for a given d. This can be achieved

by using either (8) or (9). It is done by first finding ξ’s that satisfy the system

stability. As seen in (8) and (9), the PLL is stable whenever all poles (i.e., roots of

the denominator) of (8) or (9) lie inside the unit circle [8]. It can be shown that the

value of ξ resulting in the system stability can be expressed as [9]

0 < ξ < 2 sin
(

π

4d + 2

)
. (10)

Figure 5 shows the maximum value of ξ that retains the system stability for different

delays. Apparently, the stability range of ξ’s decreases dramatically as d increases.

Among a set of ξ’s that satisfies the system stability, we select one ξ so that the

system response can catch the step response within C samples with ±5% tolerance.

14

0 5 10 15 20 25 30 35 40 45 50
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(a) Normalized loop delay, d

ξ
 (P

LL
 g

ai
n

pa
ra

m
et

er
)

ξ
64

ξ
100

 ξ
200

ξ
300

0 50 100 150 200 250 300 350 400 450 500

0.95

1.05

(b) Time (in bit periods)

M
ag

ni
tu

de

 d increases

 d increases

Convergence rate within 100 samples

± 5% tolerance

Figure 6: (a) ξC ’s satisfying the system stability and the convergence rate of C
samples for different delays, and (b) the system step responses using ξ100 for the
delays ranging from 0 to 30T .

The 5% tolerance is introduced to relax our criterion so as to reduce the effect of the

noise in the timing loop. Figure 6(a) shows ξC ’s that satisfy both the system stability

and the convergence rate of C samples. Clearly, the faster the convergence rate, the

larger the value of ξ. As depicted in Figure 6(a), for a given C, there are only some

ξ’s that satisfy the system stability up to a certain loop delay. For example, there

15

0 14 50 100 150 200 250
0

0.95
1

1.05

1.4

(a) Time (in bit periods)

M
ag

ni
tu

de

 ξ = 0.005

 ξ = 0.01

 ξ = 0.0218

 ξ = 0.055

 ξ = 0.035

0 50 100 150 200 250
−0.4

−0.05
0

0.05

1

(b) Time (in bit periods)

M
ag

ni
tu

de

 ξ = 0.005

 ξ = 0.01
 ξ = 0.0218

 ξ = 0.055

 ξ = 0.035

Figure 7: (a) The system step responses and (b) the error responses with different
ξ’s for d = 14.

exists ξ100 up to a loop delay of 30T . Figure 6(b) shows the system step responses

using (8) and ξ100 for d = 0 to 30, which coincides with our criterion.

Since we design ξ100 so that the system can catch the step response within 100

samples with ±5% tolerance, this implies that the absolute value of the magnitude

of the error response E(z) given in (9) should also be less than or equal to 0.05 after

100 samples, as shown in Figure 7 for d = 14. Observe that there are two ξ100’s (i.e.,

16

ξ = 0.0218 and ξ = 0.055) that satisfy the convergence rate of 100 samples with ±5%

tolerance. Nonetheless, it is desirable in practice to employ a small ξ in the timing

loop to minimize the loop bandwidth, thus reducing the effect of the noise in the

timing loop.

2.3.2 Linear Analysis of Second-Order PLL

When there is a frequency offset component in a system, a second-order PLL must

be employed. To design the second-order PLL gain parameters (both ξ and κ), we

first design ξ, for given d and C, by assuming that there is only phase error in the

system. This is achieved by the method described in Section 2.3.1. After obtaining

ξ, we can then design κ based on a linear analysis of second-order PLL for a given

amount of frequency offset. In this analysis, the frequency error is modeled as τk =

kfd, where fd is the amount of frequency offset as a fraction of T .

Consider the second-order PLL update equations, which are given by

θ̂k+1 = θ̂k + κε̂k−d, (11)

τ̂k+1 = τ̂k + ξε̂k−d + θ̂k+1. (12)

Assuming that there is no noise in TED (i.e., using ε̂k = εk = τk − τ̂k), the system

transfer function of a second-order PLL can be expressed as

G(z) =
Γ̂(z)

Γ(z)
=

(ξ + κ)z−(d+1) − ξz−(d+2)

1 − 2z−1 + z−2 + (ξ + κ)z−(d+1) − ξz−(d+2)
, (13)

and its corresponding error transfer function is

E(z) = Γ(z) − Γ̂(z) =
1 − 2z−1 + z−2

1 − 2z−1 + z−2 + (ξ + κ)z−(d+1) − ξz−(d+2)
· Γ(z). (14)

Again, one possible criterion to choose κ, for given d, C, and ξC , is to pick the one

that satisfies both the system stability and the convergence rate for a given amount

of frequency offset. This can be done as follows. Given d, C, and ξC , we first find κ’s

that satisfy the system stability. As seen in (13) and (14), the PLL is stable whenever

17

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

κ (PLL gain parameter)

M
ax

im
um

 m
ag

ni
tu

de
 o

f E
(z

) a
fte

r
C

 s
am

pl
es

0.5% frequency offset

 C = 100

 C = 50

0.2% frequency offset

Figure 8: Maximum magnitude of E(z) after C samples using d = 14 and ξC .

all poles of (13) or (14) are inside the unit circle. Among a set of κ’s that satisfies

the system stability, we pick one κ so that it yields the lowest magnitude of E(z)

after C samples to reduce the effect of the noise in the timing loop. Figure 8 plots

the maximum magnitude of (14) after C samples as a function of κ’s for d = 14 and

ξC . Interestingly, it turns out that this analysis yields the same κ, regardless of the

amount of frequency offset, but the corresponding magnitude of E(z) is, however,

proportional to the amount of frequency offset.

It should be noted that the method of designing the PLL gain parameters ex-

plained so far is based on the assumptions that the S-curve slope of (4) is unity at the

origin and there is no noise in the system. Therefore, before using ξ and κ obtained

from this analysis in the timing loop, we must normalize the S-curve slope of TED

to be one at the origin.

2.3.3 Finding the S-curve

The S-curve or timing function [46] is defined as the mean of {ε̂k}, assuming that

all decisions are correct (i.e., r̂k = rk for all k) and the input data symbols are

18

uncorrelated with unit energy, i.e.,

STED(ε) = E[ε̂k | ε, r̂k = rk for∀k], (15)

where ε = τ − τ̂ is the timing error. Because this function looks like an “S” (rotated

by 90 degrees), it is named the “S-curve.” The S-curve can be used to determine the

performance of TED.

For a given channel impulse response, the S-curve can be derived analytically as

described in [46]. For instance, let us consider the perfectly equalized PR-IV channel

model shown in Figure 4, i.e., H(D) = 1 − D2. The timing function of the M&M

TED for this channel can then be expressed as

STED(ε) = E[ε̂k | ε, r̂k−1 = rk−1, r̂k = rk]

= KT E[rk−1yk − rkyk−1]

= KT E[(ak−1 − ak−3)
∑

i

aih(kT − iT − ε)

− (ak − ak−2)
∑

i

aih(kT − T − iT − ε)]

=
3T

16
{−h(−T − ε) + 2h(T − ε) − h(3T − ε)} , (16)

where rk = ak −ak−2 is the k-th noiseless channel output, yk =
∑

i aih(kT − iT − ε) is

the k-th sampler output, and h(t) = q(t)− q(t− 2T) is a PR-IV pulse. The constant

KT = 3T/16 is introduced to ensure that the S-curve slope of (16) is unity at the

origin.

On the other hand, when the channel impulse response is not known, one can still

obtain the S-curve by simulation. This is done by opening the timing loop in Figure 4

(i.e., discarding a loop filter and a VCO), sampling the received signal y(t) at time

kT (i.e., τ̂ = 0), and replacing τ with ε. Hence, we measure the time average of {ε̂k}
for a given ε to obtain a single value of STED(ε). We compute STED(ε) for ε ranging

from −0.5T to 0.5T . Eventually, the S-curve is obtained by plotting a graph between

ε/T and STED(ε)/T .

19

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Normalized timing error (ε/T)

S
 T

E
D
(ε

)/T

Normalized timing funtion

Mean

 E
b
/N

0
 = 5 dB

10 dB

20 dB

Figure 9: S-curves of the M&M TED for a PR-IV channel based on conventional
timing recovery with instantaneous decision.

Figure 9 shows the S-curve of the M&M TED for a PR-IV channel based on

conventional timing recovery with instantaneous hard decision, which is extracted by

a simple ternary symbol-by-symbol decision with threshold at ±1, i.e.,

r̂k =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2 if yk > 1

−2 if yk < −1

0 else

. (17)

The curve labeled “Normalized timing function” corresponds to (16). Clearly, the

timing function is odd symmetric with respect to ε = 0. This implies that the

sampling phase offset updated by a PLL using the M&M TED will settle down in the

steady state at ε = 0. It appears that simulations agree well with the timing function

only for small ε/T ’s. This is because the assumption that r̂k = rk for ∀k is no longer

valid as ε/T increases. That is the reason why the range in which STED(ε) matches

the normalized timing function at high per-bit SNR, Eb/N0, is larger than that at

low Eb/N0.

20

0 500 1000 1500 2000 2500 3000 3500 4000
−T

−0.5T

0

0.5T

T

Time (in bit periods)

T
im

in
g

es
tim

at
e

Actual τ

Estimated τ

Figure 10: An example of a cycle slip.

It should be pointed out that zero crossings of the S-curve represent the equi-

librium points of operation, where the PLL can track the timing offsets well. In

practice, beyond ε/T = 0, the PLL also exhibits other equilibrium points at ε =

±T,±2T, . . . ,±nT , where n is an integer. The noise and other disturbances in a

system can produce a large phase deviation, which may cause a transition from one

equilibrium point to another. When this happens, we say that a cycle slip is occurred,

which can cause a burst of errors in data detection process. Figure 10 demonstrates

an example of a cycle slip. This figure implies that the PLL can track the actual

timing offset, τ , well at the beginning of the data packet. Then, when a cycle slip

occurs, the timing recovery unit gradually loses track of the actual timing offset until

it settles down at the offset corresponding to multiples of symbol durations. In other

words, a cycle slip causes the PLL to operate at another equilibrium point. That is

why in this example, the estimated timing offset, τ̂ , differs from τ by approximately

T at the end of the data packet. Several approaches have been proposed to deal with

a cycle slip [7, 33, 55, 56]. We will show later in this work that our proposed timing

recovery schemes are also robust against a cycle slip.

21

2.4 Performance of Conventional Timing Recov-

ery

Consider the perfectly equalized PR-IV channel model shown in Figure 4. Apparently,

a conventional receiver performs timing recovery and ML equalization separately.

Therefore, the overall performance of an uncoded system is mainly determined by

how good conventional timing recovery is.

In this section, we investigate the performance of conventional timing recovery

when operating in a system with and without frequency offset. We consider the case

where the symbol detector used in the timing loop is a hard slicer (i.e., a memoryless

multi-level slicer), where the instantaneous hard decision is given by (17). For data

detection process, the sampler outputs {yk} are applied to the Viterbi detector with

a decision delay of 60T to determine the most likely input sequence. Each BER point

was computed using as many data packets as needed to collect 10000 error bits.

For the system without frequency offset, a first-order PLL is sufficient to be used

for the timing update operation. In this case, we assume perfect acquisition by setting

τ0 = 0 so that a preamble is not needed, and one data packet consists of 4096 data bits.

Figure 11 compares the performance of the RMS timing error, σε =
√

E[(τk − τ̂k)2],

and the BER as a function of Eb/N0’s. Note that the PLL gain parameter, ξ, was

designed to recover the phase change within 100 symbols based on a linearized model

of first-order PLL (i.e., ξ100 = 0.0295), as described in Section 2.3.1. It is evident

that the larger the random walk parameter σw/T , the worse the performance (both

in terms of σε/T and BER). Observe that the lower the σε/T , the lower the BER.

Therefore, one can use either σε/T or BER as a measure to compare the performance

of different timing recovery schemes.

For the system with frequency offset, conventional timing recovery must employ

a second-order PLL. To investigate its performance, we consider the system in a

moderate system condition, e.g., with σw/T = 0.5% and 0.2% frequency offset. Again,

22

4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

R
M

S
 ti

m
in

g
jit

te
r

 σ
ε/T

 (%
)

(a) E
b
/N

0
 (dB)

 σε/T = 0.1%

 σε/T = 1%

4 5 6 7 8 9 10
10

−5

10
−4

10
−3

10
−2

10
−1

B
E

R

(b) E
b
/N

0
 (dB)

 σε/T = 0.1%

 σε/T = 1%

Figure 11: (a) RMS timing jitter σε/T and (b) BER performances as a function
of Eb/N0’s for the perfectly equalized PR-IV channel with different σw/T ’s (without
frequency offset).

the PLL gain parameters, ξ and κ, were designed to recover phase/frequency changes

within C symbols based on a linearized model of second-order PLL. The ξ’s designed

for d = 0 with C = 50, 100, and 256 are 0.012, 0.029, and 0.058, respectively, whereas

the κ’s designed for d = 0 with C = 50, 100, and 256 are 0.00015, 0.000885, and

0.00325, respectively. We also consider the case where the same PLL gain parameters

23

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R Perfect timing

 C = 256

Conventional timing recovery
with hard decision

 C = 100

 C = 50

Figure 12: BER performance of conventional timing recovery for the perfectly equal-
ized PR-IV channel with σw/T = 0.5% and 0.2% frequency offset.

are employed during both acquisition and tracking modes. One data packet consists of

a C-bit preamble and 4096 data bits. Figure 12 shows the performance of conventional

timing recovery using the PLL gain parameters designed for different C’s. The curve

labeled “Perfect timing” represents conventional timing recovery that uses τ̂k = τk

to sample y(t). Obviously, conventional timing recovery does not work well when

operating in a system that requires fast convergence, i.e., when using the PLL gain

parameters designed for a small C.

As illustrated in Figures 11 and 12, it can be implied that conventional timing

recovery does not perform well in uncoded systems when the timing error is large

or when operating in a system that requires fast convergence. The easiest way to

improve the performance of conventional timing recovery is to replace the hard slicer

with either the soft slicer [56] or the Viterbi detector with a short decision delay [15].

However, we observed that only a small performance improvement is obtained. As

a result, the need for efficient timing recovery schemes becomes increasingly crucial.

The next two chapters will present new timing recovery architectures for systems with

24

and without error-correction codes.

2.5 Summary

We briefly explained how conventional timing recovery that is based on a PLL per-

forms. A method of designing the PLL gain parameters based on a linearized model

of PLL was given. According to our design criterion, it turns out that this method

results in the same values of the PLL gain parameters, regardless of the amount of

frequency offset. Finally, we have demonstrated that for low to moderate SNRs, con-

ventional timing recovery does not perform well, especially when the timing error is

large or when operating in a system that requires fast convergence.

25

CHAPTER 3

PER-SURVIVOR TIMING RECOVERY FOR

UNCODED PARTIAL RESPONSE CHANNELS

In this chapter, a new timing recovery scheme that jointly performs timing recovery

and ML equalization is proposed for uncoded PR channels. Its architecture is fully

explored, and its performance is compared with conventional timing recovery. The

convergence behavior of different timing recovery schemes is also studied. Finally, a

reduced-complexity version of the proposed scheme is given and investigated.

3.1 Introduction

Theoretically, joint ML estimation of the timing offset and the data sequence is a pre-

ferred method of synchronization [48] but this approach is very complex. A solution

based on either the expectation-maximization (EM) algorithm [27, 57] or the extended

Kalman filter [31] is still complicated. In practice, a conventional receiver performs

timing recovery and ML equalization separately, as shown in Figure 4. Specifically,

conventional timing recovery is based on a PLL that relies on the decision provided by

its own symbol detector, which can be either a Viterbi detector with a short decision

delay or a memoryless multi-level slicer. However, the Viterbi detector has a funda-

mental trade-off between reliability and the decision delay, whereas the memoryless

multi-level slicer might yield an unreliable decision.

To improve the performance of conventional timing recovery, a reliable decision

with zero decision delay can be extracted by utilizing the already-given information

inside the trellis structure [24]. Specifically, each state transition in the trellis uniquely

specifies a corresponding symbol. Hence, at least one state transition in each trellis

26

stage will correspond to a correct decision. Utilizing that decision for the timing

update operation will improve the performance of timing recovery. The idea of using

the information available in the trellis to estimate other unknown parameters is known

as per-survivor processing (PSP) [66]. PSP has been employed in many applications

including channel identification, adaptive ML sequence detection, and phase/carrier

recovery [4, 13, 18, 21, 41, 65, 66, 83].

With PSP, we propose PSP-based timing recovery [36] for uncoded PR channels,

which jointly performs timing recovery and ML equalization, as shown in Figure 1(b).

The proposed scheme will take the received analog signal as its input, perform timing

recovery and ML equalization jointly, and then output the most likely input sequence.

3.2 System Description

We use the same perfectly equalized PR-IV channel model as shown in Figure 4 (i.e.,

with H(D) = 1−D2). We also assume perfect acquisition by setting τ0 = 0. Because

our model has no frequency offset component, the sampling phase offset can then be

updated by a first-order PLL according to

τ̂k+1 = τ̂k + ξ
3T

16
{ykr̂k−1 − yk−1r̂k}. (18)

where r̂k is an estimate of rk ∈ {0,±2}.
As shown in (18), the performance of conventional timing recovery depends on the

quality of the decision r̂k provided by a symbol detector used in the timing loop. It is

evident from Figure 4 that the total delay in the timing loop results from the decision

delay, dT , introduced by the symbol detector. The instantaneous hard decision (i.e.,

d = 0) can be extracted by a memoryless three-level quantization of yk as given in

(17), but it might yield an unreliable decision. An improved decision can be obtained

from the Viterbi detector with a short decision delay of dT . This is done by choosing

the best survivor path at each time instant, and then the tentative decision, r̂k−d, is

found by moving d steps backward along that survivor path. Apparently, there is a

27

trade-off between reliability and the decision delay, since reliability can be improved

by increasing the decision delay. However, a large delay is undesirable because it

slows the PLL’s response to the time-varying timing offsets.

Another method to obtain a good decision with zero decision delay is to utilize

the PSP technique, which will be discussed in the next section.

3.3 PSP-Based Timing Recovery

PSP-based timing recovery works in a similar fashion as the Viterbi algorithm does,

except with an additional timing update operation. The key idea of PSP-based timing

recovery is to sample the received analog signal y(t) using different sampling phase

offsets associated with each state transition. Thus, the branch metrics at each stage

of the trellis are calculated based on the sampling phase offset of the starting state.

Additionally, each survivor of the Viterbi algorithm maintains its own estimate of the

timing offset, and this estimate is updated according to the history data associated

with the survivor path. For simplicity, we first restrict ourselves to an M&M TED

algorithm when performing the timing update operation. As a result, we will refer to

PSP-based timing recovery with an M&M TED as “PSP-MM.”

3.3.1 PSP-MM Algorithm

Figure 13 shows the PSP-MM algorithm, where the lines beginning with * are the

additional steps beyond the conventional Viterbi algorithm. Note that the constant

3T/16 in (A-10) is only for the PR-IV channel, and it can also be included in the PLL

gain parameters. The details on how PSP-MM performs can be explained as follows.

Consider the PR-IV trellis structure in Figure 14. Let Ψk = {ak−1 ak−2} denote

the state at time k (or the k-th stage). There are Q = 2ν = 4 states in this trellis

labeled as state 0 to state 3, where ν is the PR-IV channel memory. Let (p, q) be the

state transition from state p to state q, and let πk(p) denote a predecessor for state p

at time k, defined as the starting state associated with the best state transition. We

28

(A-1) Initialize Φ0(p) = 0 for ∀p

*(A-2) Initialize τ̂0(p) = 0 and θ̂0(p) = 0 for ∀p

(A-3) For k = 0, 1, . . . , L + ν − 1

(A-4) For q = 0, 1, . . . , Q − 1

*(A-5) yk(p) = y(kT + τ̂k(p)) for ∀p

(A-6) ρk(p, q) = |yk(p) − r̂(p, q)|2 for ∀p

(A-7) πk+1(q) = arg minp{Φk(p) + ρk(p, q)}
(A-8) Φk+1(q) = Φk(πk+1(q)) + ρk(πk+1(q), q)

(A-9) Sk+1(q) = [Sk(πk+1(q)) |πk+1(q)]

*(A-10) ε̂ = 3T
16 {yk(πk+1(q))r̂(πk(πk+1(q)), πk+1(q))−yk−1(πk(πk+1(q)))r̂(πk+1(q), q)}

*(A-11) θ̂k+1(q) = θ̂k(πk+1(q)) + κε̂

*(A-12) τ̂k+1(q) = τ̂k(πk+1(q)) + ξε̂ + θ̂k+1(q)

(A-13) End

(A-14) End

(A-15) Extract â from the survivor path that minimizes ΦL+ν

Figure 13: PSP-MM algorithm, where the lines beginning with * are the additional
steps beyond the conventional Viterbi algorithm.

define τ̂k(p) as the k-th sampling phase offset for state p at time k, which is used to

sample y(t) at time k for the state transitions emanating from state p at time k, e.g.,

yk(p) = y(kT + τ̂k(p)), where yk(p) is the k-th sampler output for state p at time k.

We also define θ̂k(p) as the k-th frequency error for state p at time k, which will be

used to update τ̂k(p) (see (A-12)).

Consider the k-stage of the trellis. There are two state transitions arriving at state

2 at time k + 1, i.e., (1, 2) and (3, 2). We first sample y(t) using τ̂k(1) and τ̂k(3) to

obtain yk(1) and yk(3), respectively. Next, we compute two branch metrics ρk(1, 2)

and ρk(3, 2) according to (A-6), where r̂(p, q) is the noiseless channel output associated

with (p, q). Then, the starting state associated with the best state transition leading

to state 2 at time k + 1 is chosen according to (A-7).

29

-1 -1

 1 -1

-1 1

 1 1

time k-1 k k+1 k+2

)(pyk

)3(k̂τ

(0)

(1)

(2)

(3)

)3,2(kρ

)1(k̂τ

)2(ˆ 1+kτ

)1,2(kρ

)0,1(r̂

)2(1+kπ

)1(kπ)1(kΦ

)2(1+Φk

1ˆ −=a
1ˆ =a

k-th stage

)1(k̂θ

)2(ˆ
1+kθ

Figure 14: The PR-IV trellis structure explaining how PSP-MM performs.

Suppose (1, 2) is the best state transition leading to state 2 at time k + 1 so that

πk+1(2) = 1. The path metric for state 2 at time k + 1, Φk+1(2), is updated based on

(A-8), and the survivor path for state 2 at time k + 1, Sk+1(2), is extended according

to (A-9). Hence, we update the next sampling phase offset, τ̂k+1(2), based on (A-10)

– (A-12) using the information from Sk+1(2). This τ̂k+1(2) will be employed to sample

y(t) at time k + 1 for the state transitions emanating from state 2 at time k + 1. We

follow these steps according to the Viterbi algorithm for an entire received signal.

Eventually, the decision is made by choosing the survivor path that has the minimum

path metric.

Beyond the conventional Viterbi algorithm, PSP-MM needs new storage require-

ments for (i) the sampling phase offsets, (ii) the frequency errors, and (iii) the sampler

outputs. Nevertheless, only those of the current and previous stages need to be stored,

thus minimizing extra memory. Furthermore, it is evident that PSP-MM requires one

PLL for each survivor path. Consequently, for a PR-IV channel with four states, the

complexity of timing recovery of PSP-MM is four times the complexity of conventional

30

timing recovery.

3.3.2 New Timing Error Detector

The PSP-MM described in Section 3.3.1 does not exploit the future information avail-

able in the trellis, i.e., the channel output at the next time instant. Consider the case

where we are at state 2 at time k + 1, we would know exactly that there will be two

state transitions emanating from this state, i.e., (2, 0) and (2, 1). Since the two future

channel outputs, r̂(2, 0) and r̂(2, 1), are available at time k, it might be a good idea

to incorporate them for the timing update operation at time k.

In doing so, we need to develop the TED algorithm that is able to use future

information. One such TED algorithm can be found by minimizing the log-likelihood

function of the samples {yk} according to [48]

L(y|̂r, ε) =
∑
m

∣∣∣∣∣ym −∑
n

r̂nq((m − n)T − τ + τ̂)

∣∣∣∣∣
2

= A −∑
m

ym

∑
n

r̂nq((m − n)T − τ + τ̂), (19)

where A is a constant independent of τ̂ , ym = y(mT + τ̂), τ is the actual timing offset,

and τ̂ is an estimate of τ .

Since we are concerned with an error feedback algorithm, only τ̂ close to τ is of

interest [46, 48]. Thus, the timing error signal can be obtained by differentiating (19)

with respect to τ̂ , i.e.,

∂L(y|̂r, ε)
∂τ̂

= −∑
m

ym

∑
n

r̂nq̇((m − n)T), (20)

where q̇(kT) is the derivative of q(t) evaluated at time kT , which can be expressed as

q̇(kT) =

⎧⎪⎪⎨
⎪⎪⎩

0 k = 0

1
kT

(−1)k otherwise
. (21)

With a symmetric property [48], the estimated timing error at time k for four

observations can be written as

ε̂k = −180T

3086

k+1∑
m=k−2

ym

k+1∑
n=k−2

r̂nq̇((m − n)T)

31

=
180T

3086
{yk+1(r̂k − 0.5r̂k−1 + r̂k−2/3) + yk(−r̂k+1 + r̂k−1 − 0.5r̂k−2)

+ yk−1(0.5r̂k+1 − r̂k + r̂k−2) + yk−2(−r̂k+1/3 + 0.5r̂k − r̂k−1)} , (22)

where we approximate yk+1 = y(kT +T + τ̂k) assuming that the timing offset is slowly

varying. The constant 180T/3086 is introduced to ensure that the S-curve slope of

(22) is unity at the origin. We will refer to this TED as “4S-TED,” where “4S” stands

for the number of samples taken from time k − 2 to k + 1 that are used to compute

ε̂k. It should be noted that when using the samples only at time k − 1 and k, (22)

reduces to the M&M TED in (4) (by ignoring the constant term of both TEDs).

It is worth exploring the characteristics of both TEDs, which can be determined

by the timing function or S-curve, as described in Section 2.3.3. For a PR-IV channel,

the timing function of the M&M TED is given by (16), whereas that of the 4S-TED

can be expressed as

STED(ε) = E[ε̂k | ε, r̂k−2 = rk−2, r̂k−1 = rk−1, r̂k = rk, r̂k+1 = rk+1]

=
180T

3086
{−h(−ε) + 6h(T − ε) − h(2T − ε)

−h(−3T − ε)/3 + h(−2T − ε) − 8h(−T − ε)/3

− 8h(3T − ε)/3 + h(4T − ε) − h(5T − ε)/3} . (23)

The mean and the standard deviation of both TEDs (when employed in PSP-

based timing recovery) as a function of normalized timing errors ε/T ’s at Eb/N0 =

10 dB are plotted in Figure 15, assuming that we have access to the correct future

information. Clearly, both timing functions are odd symmetric with respect to ε = 0.

Thus, regardless of the TED used, the sampling phase offset updated according to

(18) will settle down in the steady-state at ε = 0. Observe that the mean of both

TEDs is approximately proportional to ε/T over a range of ±20% about the origin. As

expected, the standard deviation of the 4S-TED is lower than that of the M&M TED

because more information is used in evaluating the estimated timing error. Therefore,

32

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Normalized timing error (ε/T)

S
 T

E
D
(ε

)/
T

M&M TED
4S−TED

Standard deviation

Mean

Normalized timing function

Figure 15: The mean and the standard deviation of different TEDs used in PSP-
based timing recovery for a PR-IV channel at Eb/N0 = 10 dB.

the 4S-TED is more robust to the noise in the timing error signal than the M&M

TED.

Unlike PSP-MM, for a PR-IV channel with four states, the complexity of timing

recovery of PSP-based timing recovery with 4S-TED is eight times that of conven-

tional timing recovery because it requires one PLL for each state transition in one

stage of the trellis.

3.3.3 Note on Conventional Timing Recovery

We can also explain how conventional timing recovery works in the context of the

trellis structure. This will show that it is in fact a special case of PSP-based timing

recovery.

Practically, conventional timing recovery employs the same sampling phase offset

τ̂k to sample y(t) for all state transitions at time k. Then, the same decision (either

the hard decision r̂k or the tentative decision r̂k−d found by tracing back d steps along

the best survivor path chosen at time k) is used to compute the estimated timing error

33

ε̂k for all states, which finally results in the same τ̂k+1 for all states after updating it.

Therefore, PSP-based timing recovery differs from conventional timing recovery

in the sense that (i) it uses different sampling phase offsets associated with each state

transition to sample y(t); and (ii) it employs the instantaneous decision with zero

decision delay associated with each state transition to compute the estimated timing

error.

3.4 Numerical Results and Discussion

In simulation, unless otherwise specified, we consider σw/T = 0.5% and employ the

PLL gain parameter, ξ, designed to recover phase change within C = 100 bit periods,

based on a linearized model of first-order PLL, and assuming that the S-curve slope

is unity at the origin and there is no noise in the system. The ξ’s designed for the

decision delays of 0, 4T, 8T , and 20T are 0.030, 0.027, 0.025, and 0.019, respectively.

We first explore how the decision delay affects the performance of timing recovery.

In doing so, we consider the PSP-MM scheme, where we have access to all the decisions

{r̂k−d} (at any d steps earlier) associated with each survivor path. Figure 16(a)

compares the performance of different PSP-MMs, where the RMS timing error σε/T

is plotted as a function of Eb/N0’s. Apparently, PSP-MM with d = 0 yields the best

performance. This can be confirmed by plotting the σε/T performance as a function

of ξ’s at Eb/N0 = 8 dB in Figure 16(b). Again, PSP-MM with d = 0 performs better

than PSP-MM with d �= 0 for all ξ’s. Results imply that the decision delay has a

tremendous impact on overall performance. Consequently, it is desirable to use the

decision with zero decision delay whenever possible.

Figure 16 also shows the performance of PSP-based timing recovery with 4S-

TED for d = 0. As shown in Figure 16(a), PSP-based timing recovery with 4S-

TED performs better than PSP-MM at low Eb/N0’s. This might be because the

future information used in the 4S-TED helps improve the performance of timing

34

4 5 6 7 8 9 10
2.5

3

3.5

4

4.5

5

5.5

(a) E
b
/N

0
 (dB)

R
M

S
 ti

m
in

g
jit

te
r

σ ε/T
 (%

)

M&M TED (d = 0)
M&M TED (d = 4)
M&M TED (d = 8)
M&M TED (d = 20)
4S−TED (d = 0)

0.006 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
3

3.5

4

4.5

5

5.5

6

(b) PLL gain parameter (ξ)

R
M

S
 ti

m
in

g
jit

te
r

σ ε/T
 (%

)

M&M TED (d = 0)
M&M TED (d = 4)
M&M TED (d = 8)
M&M TED (d = 20)
4S−TED (d = 0)

Figure 16: Performance comparison of PSP-based timing recovery with different
TEDs (a) as a function of Eb/N0’s and (b) as a function of ξ’s at Eb/N0 = 8 dB.

recovery when uncertainty is high. Figure 16(b) also indicates that PSP-based timing

recovery with 4S-TED yields slightly lower σε/T performance than PSP-MM for small

ξ. However, it starts performing worse than PSP-MM when ξ is large. Since PSP-

based timing recovery with 4S-TED provides only a small gain over PSP-MM but

its complexity is much higher than the complexity of PSP-MM, PSP-MM is then

preferred. From this point on, we will consider only PSP-MM with d = 0 when

35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

E
b/N

0 re
qu

ire
d

to
 a

ch
ie

ve
 B

E
R

 =
 1

0−4
 (i

n
dB

)

σ
w
/T (%)

Conventional timing recovery with hard decision (d = 0)
Conventional timing recovery with tentative decision (d = 4)
PSP−MM (d = 0)
Genie−aided detector (d = 0)

Figure 17: Performance comparison of different timing recovery schemes.

comparing the performance of PSP-based timing recovery with conventional timing

recovery.

Finally, we compare the performance of PSP-MM with that of conventional timing

recovery by plotting the Eb/N0 (in dB) requirement for BER = 10−4 as a function

of σw/T ’s in Figure 17. The curve labeled “a genie-aided detector” represents con-

ventional timing recovery whose PLL has access to all correct decisions, thus serving

as a lower bound for a timing recovery scheme that is based on a PLL. Obviously,

PSP-MM performs better than conventional timing recovery, especially when σw/T

is large. As shown in Figure 17, PSP-MM is 0.5 dB better than conventional timing

recovery when operating in a system with σw/T = 1%. Although conventional timing

recovery with hard decision seems to perform comparably to that with tentative deci-

sion, this is not true when the channel is complex, e.g., the channel with large memory

or with arbitrary coefficients. That is why conventional timing recovery practically

utilizes the tentative decision provided by the Viterbi detector in most applications.

The reason that PSP-MM performs better than conventional timing recovery can

be intuitively explained as follows. At each time instant, at least one state transition

36

in each trellis stage will correspond to the correct decision. Using that decision to

perform the timing update operation will then improve the performance of timing

recovery. In other words, the PLL is fully trained if the correct path is chosen. By

following this idea for an entire received signal, the overall system performance will

be improved.

3.5 Convergence Behavior

To investigate the convergence behavior of different timing recovery schemes, we run

another experiment but this time we look at the timing estimate. Consider the

same perfectly equalized PR-IV channel model shown in Figure 4 with σw/T = 0%;

however, a huge timing offset τ̂0 = 0.5T is used. We design a PLL gain parameter

ξ based on a linearized model of PLL for C = 50, where the ξ’s designed for the

decision delays of 0 and 4T are 0.058 and 0.049, respectively.

Figure 18 shows the timing estimate behavior of different timing recovery schemes

at Eb/N0 = 10 dB based on 50 data packets. As expected, the timing estimate curve

of a genie-aided detector converges within 50 bit periods. This is because the timing

update operation is always performed on the correct decisions. On the other hand,

other schemes do not converge to the desired value τ = 0 or T within 50 bit periods

because the decisions used in the timing update operation depend on the noise level

embedded in the received analog signal. Nonetheless, as depicted in Figure 18, it

seems that PSP-MM converges faster than conventional timing recovery.

To justify that PSP-MM achieves faster convergence than conventional timing re-

covery, we plot the percentage of convergence versus time (in bit periods) of different

timing recovery schemes based on 50000 data packets in Figure 19, where the conver-

gence is achieved at time k when τ̂i, for i ≥ k, is equal to the desired value 0 or T with

±10% tolerance. It is evident that the genie-aided detector converges within 50 bit

periods. Furthermore, conventional timing recovery with tentative decision converges

37

0 50 100 150 200 250 300 350 400 450 500

0

0.5T

T

(a) Time (in bit periods)

T
im

in
g
 e

s
ti
m

a
te

0 50 100 150 200 250 300 350 400 450 500

0

0.5T

T

(b) Time (in bit periods)

T
im

in
g
 e

s
ti
m

a
te

0 50 100 150 200 250 300 350 400 450 500

0

0.5T

T

(c) Time (in bit periods)

T
im

in
g
 e

s
ti
m

a
te

0 50 100 150 200 250 300 350 400 450 500

0

0.5T

T

(d) Time (in bit periods)

T
im

in
g
 e

s
ti
m

a
te

Figure 18: Timing estimate plots of (a) conventional timing recovery with hard
decision (d = 0), (b) conventional timing recovery with tentative decision (d = 4), (c)
PSP-MM (d = 0), and (d) a genie-aided detector (d = 0), at Eb/N0 = 10 dB based
on 50 runs.

faster than that with hard decision. This is because the tentative decision is more

reliable than the hard decision. This explains why conventional timing recovery prac-

tically uses the Viterbi detector with a short decision delay as the symbol detector

in most applications [15]. As expected, PSP-MM achieves faster convergence than

conventional timing recovery. This can be implied that PSP-MM will perform better

than conventional timing recovery when operating in a system that requires fast con-

vergence. We can verify this statement by plotting the BER performance of different

38

50 100 150 200 250 300 350 400 450 500

10

20

30

40

50

60

70

80

90

100

Time (in bit periods)

P
er

ce
nt

ag
e

of
 c

on
ve

rg
en

ce

Conventional timing recovery
with hard decision (d = 0)

Conventional timing recovery
with tentative decision (d = 4)

PSP−MM

genie−aided detector

Figure 19: Percentage of convergence of different timing recovery schemes at Eb/N0

= 10 dB based on 50000 runs.

timing recovery schemes in Figure 20, using the PLL gain parameters designed for

different C’s when operating in a moderate system condition, e.g., with σw/T = 0.5%

and 0.2% frequency offset. Clearly, a large performance gap between PSP-MM and

conventional timing recovery can be obtained at high Eb/N0, especially when C is

small.

3.6 Reduced-Complexity PSP-Based Timing Re-

covery

Because PSP-MM is developed based on the Viterbi algorithm, its complexity grows

exponentially with channel memory [24]. There are several approaches proposed in

the literature to reduce the complexity of the Viterbi algorithm, including reduced-

state sequence estimation (RSSE) [22], delayed decision-feedback sequence estimation

(DDFSE) [19], the M-algorithm [72], and the T-algorithm [73]. However, it has

been shown in [68, 70, 74] that the M- and T-algorithms seem to be more efficient

than RSSE and DDFSE, when the suitable values for their parameters are chosen.

39

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R Perfect timing

 C = 100

 C = 50

PSP−MM

Conventional timing recovery
with tentative decision (d = 4)

Conventional timing recovery
with hard decision (d = 0)

Figure 20: BER performance of different timing recovery schemes using the PLL
gain parameters designed for different C’s for systems with σw/T = 0.5% and 0.2%
frequency offset.

Consequently, in this section, we focus on reducing the complexity of PSP-MM based

only on the M- and T-algorithms, and then investigate their performances.

3.6.1 The M-algorithm

The M-algorithm, a breadth-first trellis search algorithm, was first introduced by

Simmons and Mohan [72]. It has been employed in many applications, including

source coding [72] and channel decoding [70]. It performs in a same manner as the

Viterbi algorithm does, except with an additional discard rule, which can be explained

as follows.

At each time instant, the M-algorithm first finds the minimum path metric lead-

ing to each trellis state. Hence, it retains only the M (M must be less than the

total number of states in one stage of the trellis) paths with the lowest path metrics

among all survivor paths. Therefore, the M-algorithm performs the same number of

computational operations at each time instant.

40

3.6.2 The T-algorithm

The T-algorithm has been proposed by Simmons [73]. It is also a breadth-first trellis

search algorithm but it has a different discard rule. At each time instant, it first finds

the best overall minimum path metric, ΦB. Then, it discards all paths whose path

metrics are larger than ΦB by a threshold value, T, in percentage of ΦB. Consequently,

the T-algorithm has a varying number of paths kept at each time instant.

3.6.3 Performance Comparison

To compare the performance of PSP-MM with different reduced-complexity approaches,

we consider the BER and the average number of searched states (or survivor paths)

[74]. The latter provides the amount of required computational time and determines

the memory requirement because path extension and update operations per path are

identical for all approaches. It should be noted that the M-algorithm has an addi-

tional sorting overhead at each time instant, and the T-algorithm requires a storage

capacity equal to the total number of states in one trellis stage because it has a vary-

ing number of paths kept at each time instant, which will slow down the execution

time [68]. This excess requirement must be taken into consideration when comparing

the overall system performance.

Figure 21 compares the performance of PSP-MM with different reduced-complexity

approaches. Apparently, there is a trade-off between the BER and the average num-

ber of searched states. That is, the larger the average number of searched states, the

lower the BER. At low Eb/N0, the M-algorithm does not perform well, which can be

possibly explained as follows. When erroneous equalization has occurred, it causes

many values of the path metrics to have roughly similar values, instead of the usual

wide spread of values. Thus, the M-algorithm is more likely to discard the correct

path. On the contrary, the T-algorithm is guided by the size of the path metrics.

Hence, when there are many values of significant size, the T-algorithm expands the

41

4 5 6 7 8 9 10
10

−5

10
−4

10
−3

10
−2

10
−1

(a) E
b
/N

0
 (dB)

B
E

R

Full−complexity
T = 5%
T = 1%
T = 0.5%
M = 2
M = 3

4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

(b) E
b
/N

0
 (dB)

A
ve

ra
ge

 n
um

be
r o

f s
ea

rc
he

d
st

at
es

T = 5%
T = 1%
T = 0.5%
M = 2
M = 3

Figure 21: (a) BER and (b) the average number of search states performances as a
function of Eb/N0’s of PSP-MM with different reduced-complexity approaches for a
PR-IV channel with σw/T = 0.5%.

computation to include them all. For this specific channel model, although the M-

algorithm with M = 3 and the T-algorithm with T = 5% are comparable in terms

of BER, the M-algorithm is preferred because it requires a fewer number of searched

states than the T-algorithm. Note that we also observed that a similar result is

obtained when operating in a system with any σw/T .

42

3.7 Summary

We proposed PSP-based timing recovery for PR channels to improve the performance

of conventional timing recovery without exploiting the presence of error-correction

codes. The proposed scheme jointly performs timing recovery and equalization.

It is apparent that the delay in the timing loop has a dominant impact on overall

performance. That is why PSP-MM with d = 0 performs better than PSP-MM with

d �= 0. Therefore, PSP-based timing recovery has the advantage of reducing the delay

in the timing loop. Since PSP-based timing recovery with 4S-TED provides only a

small gain over PSP-MM, PSP-MM is then preferred because it has less complexity

than PSP-based timing recovery with 4S-TED.

We have shown that PSP-MM yields better performance than conventional timing

recovery, especially when the timing jitter is large. Specifically, PSP-MM provides

a 0.5 dB gain over conventional timing recovery when operating in a system with

σw/T = 1%. It should be pointed out that as the complexity of PSP-based timing

recovery is high, all advantages obtained from PSP-based timing recovery must be

balanced against the increased implementation cost.

We also investigated the convergence behavior of different timing recovery schemes.

It has been shown that PSP-based timing recovery can achieve faster convergence than

conventional timing recovery. This explains why PSP-based timing recovery performs

better than conventional timing recovery when operating in a system that requires

fast convergence (i.e., when using the PLL gain parameters designed for small C).

Finally, we have investigated the performance of a reduced-complexity version of

PSP-based timing recovery. We found that the M- and T- algorithms can be used

to reduce the complexity of PSP-based timing recovery with acceptable performance

if their parameters are suitably chosen. Apparently, there is a fundamental trade-off

between the complexity and the BER performance.

43

CHAPTER 4

PER-SURVIVOR ITERATIVE TIMING

RECOVERY FOR CODED PARTIAL

RESPONSE CHANNELS

This chapter deals with the problem of timing recovery operating at low signal-to-

noise ratio (SNR). In this case, we consider a coded system because a large coding

gain of iterative error-correction codes (ECCs) allows reliable operation at low SNR.

A new iterative timing recovery scheme based on PSP is proposed, and its perfor-

mance is compared with conventional schemes. Then, a reduced-complexity version

of the proposed scheme is given and investigated. Finally, we propose to use the exit

transfer information chart (EXIT chart) analysis as a tool to compare and predict

the performance of iterative timing recovery schemes because the BER computation

takes a considerable amount of simulation time.

4.1 Introduction

Iterative ECCs, such as turbo codes [10] and low-density parity-check (LDPC) codes

[26], allow reliable operation at low SNR because of their large coding gains [10,

30, 86]. Furthermore, the principle of iterative decoding can also be extended to

include equalization, which is commonly known as turbo equalization [67, 79]. This

means that timing recovery must also function at low SNR. In practice, a conventional

receiver performs timing recovery and error-correction decoding separately. Specif-

ically, conventional timing recovery ignores the presence of ECCs. Thus, it fails to

work properly at low SNR (as will be seen later in simulation results).

44

Theoretically, joint ML estimation of timing offsets and message bits, which will

jointly perform timing recovery, equalization, and decoding, is a preferred method of

synchronization [48] but its complexity is huge. A solution based on the expectation-

maximization (EM) algorithm [27, 57] is also complex. Fortunately, a solution to this

problem with complexity comparable to the conventional receiver has been proposed

by Nayak, Barry, and McLaughlin [56], which will be referred to as the NBM scheme.

It is realized by embedding the timing recovery step inside the turbo equalizer [67, 75]

so as to perform timing recovery, equalization, and error-correction decoding jointly.

Nonetheless, this scheme requires a large number of turbo iterations to provide a good

performance even with a cycle slip [9] detection and correction algorithm as used in

[56], especially when the timing jitter is severe.

As discussed in Section 3, we applied PSP to develop PSP-based timing recovery,

which is implemented based on a Viterbi algorithm. Similarly, we can also perform

timing recovery and equalization jointly based on a BCJR algorithm [5]. To do

so, we apply the PSP concept to the BCJR algorithm, resulting in a per-survivor

BCJR equalizer, denoted as “PSP-BCJR.” Hence, we propose a per-survivor iterative

timing recovery scheme [35], which iteratively exchanges soft information between

PSP-BCJR and a soft-in soft-out (SISO) decoder. Although each iteration of per-

survivor iterative timing recovery has high complexity, it can automatically correct a

cycle slip much more efficiently than the NBM scheme. In other words, per-survivor

iterative timing recovery requires fewer turbo iterations than the NBM scheme to

yield a good performance.

4.2 Prior Work

Although we independently develop the PSP-BCJR module in this work, it turns out

that PSP-BCJR shares many similarities with the so-called adaptive SISO module

45

ka ky
kg

kh
kr

kn

Figure 22: An equivalent discrete-time channel model.

developed by Anastasopoulos and Chugg [1, 2, 14]. Before demonstrating that PSP-

BCJR can be considered as a special case of the adaptive SISO module, it is worth

briefly describing the adaptive SISO algorithm.

The adaptive SISO algorithm was proposed to deal with unknown parameters

in iterative detection. The exact expression of soft information, produced by the

adaptive SISO algorithm, in the presence of parametric uncertainty can be explained

as follows.

4.2.1 Channel Model

Consider the equivalent discrete-time channel model shown in Figure 22, where ak ∈
{±1} is a binary input sequence, hk is the channel impulse response, rk is the noiseless

channel output, gk is the unknown parameter, and nk is an i.i.d. zero-mean Gaussian

random variable with variance σ2
n. The observation, yk, can then be written as

yk = rT
k gk + nk, (24)

where rk and gk are the column vectors of {rk} and {gk} at time k, respectively, and

(·)T is the transpose operation. To derive the exact expression of soft information,

it is assumed [2] that the column vector process gk is a first-order Gaussian Markov

(GM) process [2] and stationary according to

gk = Ggk−1 + wk, (25)

where wk is the zero-mean Gaussian vector with covariance Kw(i, j) = Qδ(i, j), δ(i, j)

is the Kronecker delta function [42], and the covariance matrix of gk, Kg, must satisfy

46

[2]

Kg = GKgG
T + Q. (26)

Under this condition, its time-reversed process, g−k, is also a first-order GM process,

i.e.,

gk = Gbgk+1 + vk, (27)

where [2]

Gb = KgG
TK−1

g ,

Kv(i, j) = Qbδ(i, j),

Qb = Kg − KgG
TK−1

g GKg.

4.2.2 Optimal Adaptive SISO Algorithm

The objective of the SISO algorithm is to generate the soft information about the

input and the output symbols of the channel based on the observations. Denote

ym
i = [yi yi+1 · · · ym−1 ym] as a collection of the samples from time i to time m. For a

generic quantity uk (i.e., ak or rk), the soft information of the form

APP(uk) = Pr[uk|yL
0] = c

∑
aL
0 :uk

Pr[yL
0 , aL

0] = c
∑

aL
0 :uk

Egk
[Pr[yL

0 , aL
0 |gk]] (28)

is considered in [2], where aL
0 : uk denotes all possible input sequences consistent with

uk, L + 1 is the length of the input sequence, and c is a normalized constant.

A close form solution of (28) can be easily obtained by decomposing Pr[yL
0 , aL

0]

into three terms according to [2]

Pr[yL
0 , aL

0] = Pr[yk
0 , a

k
0]︸ ︷︷ ︸

past/present

·Pr[yL
k+1, a

L
k+1|Ψk+1]︸ ︷︷ ︸

future

·
∫

gk

Pr[gk|yk
0 , a

k
0] · Pr[gk|Ψk+1, y

L
k+1, a

L
k+1]

Pr[gk]
dgk︸ ︷︷ ︸

binding factor Bf

, (29)

47

where Ψk is the state in the tree at time k. The first term in (29) depends on past

and present information, which can be computed recursively as [31]

Pr[yk
0 , a

k
0] = Pr[yk|yk−1

0 , ak−1
0] · Pr[ak] · Pr[yk−1

0 , ak−1
0]

= N (yk; rT
k g̃k|k−1; σ2

n + rT
k G̃k|k−1rk) · Pr[ak] · Pr[yk−1

0 , ak−1
0], (30)

where N (y; µ; σ2) = 1√
2πσ2

exp(− (y−µ)2

2σ2) is a Gaussian distribution function with mean

µ and variance σ2, and g̃k|k−1 and G̃k|k−1 are the one-step forward channel predictor

and its corresponding covariance generated by a Kalman filter (KF) [31]. Similarly,

the second term, relying only on the future information, can also be calculated recur-

sively by [2]

Pr[yL
k+1, a

L
k+1|Ψk+1] = Pr[yk+1|yL

k+2, a
L
k+1, Ψk+1] · Pr[ak+1] · Pr[yL

k+2, a
L
k+2|Ψk+2]

= N (yk+1; rT
k+1g̃

b
k+1|k+2; σ2

n + rT
k+1G̃

b
k+1|k+2rk+1)

·Pr[ak+1] · Pr[yL
k+2, a

L
k+2|Ψk+2], (31)

where g̃b
k|k+1 and G̃b

k|k+1 are the one-step backward channel predictor and its corre-

sponding covariance generated by a KF. The binding factor, Bf , (i.e., the third term

in (29)) measures the dependency of the past, present, and future information that is

introduced by gk and would be eliminated in the absence of parametric uncertainty.

Note that, for gk being only a GM process and stationary, the closed form of Bf can

be derived, as given in [2] (see Appendix in [2]).

Figure 23 illustrates how (28) is evaluated, which can be explained as follows.

Starting at time 0, a forward 2-ary tree is built and each node represents a valid

sequence path. Hence, Pr[yk
0 , a

k
0], g̃k|k−1, and G̃k|k−1, which are associated with each

forward path, are computed and stored at each node. Similarly, starting at time L,

a backward 2-ary tree is built and Pr[yL
k+1, a

L
k+1|Ψk+1], g̃b

k|k+1, and G̃b
k|k+1, which are

associated with each backward path, are computed and stored at each node. After k

forward and L−k backward steps, the two trees meet each other. The 2k+1 likelihoods

48

time k k+10 L+1

12 +k

kL −2

Binding
12 +L

metrics

m
et

ric
s

backward recursion

forward recursion

Figure 23: Likelihood computation for forward and backward recursions [1].

corresponding to the nodes of the forward tree are combined with the 2L−k likelihoods

corresponding to the nodes of the backward tree, and then weighted by the binding

factor Bf . Finally, the soft output for uk is produced by computing the summation

over all terms that correspond to uk.

4.2.3 Suboptimal Adaptive SISO Algorithm

As shown in (29), the exact expression of soft information involves likelihood updates

on both the forward and the backward trees with the aid of per-path KFs, followed

by binding of the past and future metrics. This implies that the exact expression has

very high complexity. To reduce its complexity, some possible simplifications have

been suggested in [2], including (i) using a non-exhaustive tree search, (ii) using a

non-Kalman parameter estimator, and (iii) using a suboptimal binding factor. For

example, the exhaustive tree search can be avoided by employing the PSP technique

[65] so that the KF parameter estimate can be kept only for every trellis state and

49

updated in a PSP fashion. The second simplification is to replace a KF parameter

estimator with a simple estimator, e.g., the estimator that is based on the least mean-

squared (LMS) algorithm [8]. The last simplification is to replace the optimal binding

factor (see Appendix in [2]) with a suboptimal one [1, 2, 14].

Based on all possible simplifications, several suboptimal adaptive SISO algorithms

can be realized. Some of them have been investigated in the applications of the trellis-

coded modulation (TCM) in interleaved frequency-selective fading channels [2] and

in the turbo-coded systems with carrier phase tracking [3]. Interestingly, we found

that one of the suboptimal adaptive SISO algorithms is the same as the PSP-BCJR

module if the following happens (see Appendix A in [3]): (i) a PSP technique is used

instead of an exhaustive tree search; (ii) the phase error detector is replaced by an

M&M TED; and (iii) the binding factor is ignored.

4.2.4 Note on the Adaptive SISO Algorithm

For the application of timing recovery in the ISI channel with time-varying timing

offsets, the exact expression of soft information given in (29) is no longer valid. To

justify this statement, we consider the system model shown in Figure 4. By assuming

that y(t) is bandlimited, we can represent y(t) with its corresponding set of samples

{yk}, where

yk =
k+m∑

i=k−m

riq(kT − iT − τi) + nk. (32)

This is because the bandlimited nature of y(t) makes {yk} sufficient statistics. Equa-

tion (32) can also be expressed in a matrix form, similar to (24), as

yk = rT
k gk + nk, (33)

50

but with

gk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q(mT − τk−m)

...

q(−τk)

...

q(−mT − τk+m)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (34)

and rk = [rk−m · · · rk · · · rk+m]T. Clearly, the vector process gk in (34) depends not

only on the time indexes but also on the timing offsets. Furthermore, we can show

that (34) does not have its corresponding time-reversed process as given in (27).

Consequently, the structure of gk for the application of timing recovery considered

in this work violates a GM process, thus preventing us from arriving at the exact

expression of soft information as given in (29). This explains why, when developing

the PSP-BCJR module based on the system model given in Figure 4, we cannot

derive it analytically because the system model is too complicated. Instead, we

attempt to develop PSP-BCJR in an ad-hoc manner by incorporating the timing

update operation inside the BCJR algorithm so as to perform timing recovery and

equalization jointly based on the BCJR algorithm.

It should also be noted that the PSP-BCJR module developed in this work can be

applied to any application, and not limited to the channel without ISI as considered

in [2, 3]. In the next section, we will explain how PSP-BCJR is developed and how

it functions.

4.3 System Description

Consider the coded PR channel model in Figure 24. The message bits {xk} are

encoded by an encoder and interleaved by an s-random interleaver1 [30] (i.e., the π

block) to form an interleaved sequence, ak. The interleaved sequence ak with bit

1It will randomly shuffle the symbols so that no two symbols within s symbols before the inter-
leaver will be within s symbols afterwards.

51

q(t)

n(t)

ka kr
kτ21 D−π 21

1

D⊕
kx p(t)kb

Encoder

Figure 24: Data encoding with the precoded PR-IV channel model.

LPF
y(t) SISO

equalizer

PLL

kkT τ̂+

π

1−π

kλ

kx̂p(t) ky SISO
decoder

Figure 25: A conventional receiver architecture.

period T is further precoded by a 1/(1 ⊕ D2) precoder and modulated by a PR-IV

pulse h(t) = q(t) − q(t − 2T).

Again, we assume perfect acquisition by setting τ0 = 0. Because our model has

no frequency offset component, the sampling phase offset can then be updated by a

first-order PLL according to

τ̂k+1 = τ̂k + ξ
3T

16
{ykr̃k−1 − yk−1r̃k}, (35)

where yk is the k-th sampler output (see Figure 25), and r̃k is the k-th soft estimate

of the channel output, rk ∈ {0,±2}, which is given by [56]

r̃k = E[rk|yk] =
2 sinh(2yk/σ

2
n)

cosh(2yk/σ2
n) + e2/σ2

n
. (36)

The soft estimate is considered because it provides a better performance than the

hard estimate [56] given in (17).

In the conventional receiver, conventional timing recovery is followed by a turbo

equalizer [67, 75] as shown in Figure 25, which iteratively exchanges soft information

between an SISO equalizer for the precoded PR-IV channel and an SISO decoder.

52

LPF
y(t) SISO

equalizer

PLL

kkT τ̂+

π

1−π kx̂p(t) ky
Interpolate

PLL

new
ky

kr
~

new
kτ̂

SISO
decoder

a
kλkλ

Figure 26: An NBM architecture.

4.4 Review of the NBM scheme

The NBM scheme was proposed by Nayak, Barry, and McLaughlin [56]. It is realized

by embedding the timing recovery step inside the turbo equalizer so as to perform

timing recovery, equalization, and error-correction decoding jointly. Figure 26 illus-

trates an architecture of the NBM scheme. We can summarize how the NBM scheme

works as follows.

At each iteration, the turbo equalizer could produce the soft estimates {r̃k} that

would be more reliable than the tentative decisions given in (36). For the precoded

PR-IV channel, the soft estimate produced by the turbo equalizer is given by [56]

r̃k = E[rk|{λa
k}, {λb

k}] =
−2 tanh(λb

k−2/2)

1 + e−λa
k

, (37)

where λa
k is the log-likelihood ratio (LLR) [8] of ak produced by the SISO decoder,

and λb
k is the LLR of bk produced by the SISO equalizer.

By running the PLL again using the original readback waveform and the soft

decision given in (37), we would get an improved set of sampling phase offsets {τ̂new
k }.

Note that, instead of storing the continuous-time readback signal, y(t), we can store

only the original set of samples, {yk}, and its corresponding sampling phase offsets,

{τ̂k}, obtained from the first front-end PLL, because the bandlimited nature of y(t)

makes them sufficient statistics. Based on {yk}, {τ̂k}, and {τ̂new
k }, an improved set of

53

samples, {ynew
k }, can be obtained by means of interpolation according to

ynew
k =

∑
i

yiq(kT + τ̂new
k − iT − τ̂i). (38)

These new samples will then be used in the next iteration of the turbo equalizer. The

process repeats as many iterations as needed. Clearly, the turbo equalizer benefits

from better samples, and timing recovery benefits from better decisions.

In addition, Nayak, Barry, and McLaughlin also proposed a simple cycle slip

detection and correction algorithm [56], which can be briefly explained as follows. As

shown in Figure 10, a cycle slip leads to an abrupt change in τ̂ by ±T . Then, a simple

detection method is to declare a cycle slip whenever the magnitude of δk = τ̂k - τ̂k−d

exceeds a given threshold ∆c, for some delay d. To correct a cycle slip, the detector

needs to add ±T to all τ̂ after the cycle slip occurs, with the sign determined by the

sign of δk. Unless otherwise stated, we use ∆c = 0.75T and d = 100T [56] in a cycle

slip detection and correction algorithm for the NBM scheme throughout this work.

4.5 PSP-BCJR

As shown in (35), the performance of conventional timing recovery relies on the

decision r̃k provided by its own symbol detector, which might yield an unreliable

decision. To overcome this drawback, a reliable decision can be extracted by utilizing

the already-given information inside the trellis structure [24]. Specifically, each state

transition in the trellis uniquely specifies a corresponding symbol. Thus, at least

one state transition in each trellis stage will correspond to a correct decision. Using

that decision for the timing update operation will improve the performance of timing

recovery. The idea of using the information available in the trellis to estimate other

unknown parameters is known as PSP.

With PSP, we develop PSP-BCJR by embedding the timing recovery process

inside the BCJR equalizer so as to perform timing recovery and equalization jointly.

Figure 27 shows the PSP-BCJR algorithm, where the lines beginning with * are the

54

additional steps beyond the conventional BCJR algorithm. Note that the constant

3T/16 in (B-9) and (B-22) is only for a PR-IV channel, and it can also be included

in the PLL gain parameters.

Here, the key idea is that each node in the trellis has its own sampling phase

offset. Thus, the branch metric is calculated based on the sampling phase offset of

the starting state. Furthermore, we propose to update the timing estimate at each

state based on the incoming branch that contributes the most to the state information.

The detail on how PSP-BCJR performs during forward and backward recursions can

be explained as follows.

4.5.1 Forward Recursion

Consider the PR-IV trellis structure shown in Figure 28. Let Ψk = {bk−1 bk−2} denote

the state at time k. There are Q = 2ν = 4 states in this trellis, labeled as state 0 to

state 3, where ν = 2 is the precoded PR-IV channel memory. Let (p, q) be the state

transition from state p to state q, and let πk(p) denote a predecessor for state p at

time k, defined as the starting state associated with the best state transition leading

to state p at time k. We define τ̂k(p) as the k-th forward sampling phase offset for

state p at time k, which is used to sample y(t) at time k for the state transition

emanating from state p at time k, e.g., yk(p) = y(kT + τ̂k(p)), where yk(p) is the

k-th sampler output for state p at time k. We also define θ̂k(p) as the k-th forward

frequency error for state p at time k, which will be used to update τ̂k(p).

Consider the k-th stage of the trellis. There are two state transitions arriving at

state 2 at time k +1, i.e., (1, 2) and (3, 2). First, we sample y(t) using τ̂k(1) and τ̂k(3)

to obtain yk(1) and yk(3), respectively. Next, we compute the metrics γk(1, 2) and

γk(3, 2) based on (B-6), where â(p, q) is the interleaved bit (or the precoder input bit)

associated with (p, q), and λk is the a priori LLR of ak. Then, the state information

αk+1(2) is updated according to (B-7).

55

*(B-1) Initialize τ̂0(p) = 0 and θ̂0(p) = 0 for ∀p

(B-2) Initialize [α0(0) . . . α0(Q − 1)] = [1 0 . . . 0]

(B-3) For k = 0, 1, . . . , L + ν − 1 [Forward recursion]

(B-4) For q = 0, 1, . . . , Q − 1

*(B-5) yk(p) = y(kT + τ̂k(p)) for ∀p

(B-6) γk(p, q) = exp
{
− 1

2σ2
n
|yk(p) − r̂(p, q)|2 + â(p,q)λk

2

}
for ∀p

(B-7) αk+1(q) =
∑

p αk(p)γk(p, q)

*(B-8) πk+1(q) = arg maxp{αk(p)γk(p, q)}
*(B-9) ε̂ = 3T

16 {yk(πk+1(q))r̂(πk(πk+1(q)), πk+1(q))− yk−1(πk(πk+1(q)))r̂(πk+1(q), q)}
*(B-10) θ̂k+1(q) = θ̂k(πk+1(q)) + κε̂

*(B-11) τ̂k+1(q) = τ̂k(πk+1(q)) + ξε̂ + θ̂k+1(q)

(B-12) End

(B-13) End

*(B-14) Initialize τ̂ b
L+ν(p) = τ̂L+ν(p) and θ̂b

L+ν(p) = θ̂L+ν(p) for ∀p

(B-15) [βL+ν(0) . . . βL+ν(Q − 1)] = [1 0 . . . 0]

(B-16) For k = L + ν − 1, L + ν − 2, . . . , 0 [Backward recursion]

(B-17) For p = 0, 1, . . . , Q − 1

*(B-18) yb
k(q) = y(kT + τ̂ b

k+1(q)) for ∀q

(B-19) γb
k(p, q) = exp

{
− 1

2σ2
n
|yb

k(q) − r̂(p, q)|2 + â(p,q)λk

2

}
for ∀q

(B-20) βk(p) =
∑

q γb
k(p, q)βk+1(q)

*(B-21) πb
k(p) = arg maxq{γb

k(p, q)βk+1(q)}
*(B-22) ε̂ = 3T

16 {yb
k(π

b
k(p))r̂(πb

k(p), πb
k+1(π

b
k(p))) − yb

k+1(π
b
k+1(π

b
k(p)))r̂(p, πb

k(p))}
*(B-23) θ̂b

k(p) = θ̂b
k+1(π

b
k(p)) + κε̂

*(B-24) τ̂ b
k(p) = τ̂ b

k+1(π
b
k(p)) + ξε̂ + θ̂b

k(p)

*(B-25) τ̂ b
k(p) = {τ̂ b

k(p) + τ̂k(p)}/2 if |τ̂ b
k(p) − τ̂k(p)| > ∆

(B-26) End

(B-27) λp
k = log

{∑
{p,q: â(p,q)=+1} αk(p)γb

k(p,q)βk+1(q)∑
{p,q: â(p,q)=−1} αk(p)γb

k
(p,q)βk+1(q)

}
(B-28) End

Figure 27: PSP-BCJR algorithm, where the lines beginning with * are the additional
steps beyond the conventional BCJR algorithm.

56

-1 -1

 1 -1

-1 1

 1 1

time k-1 k k+1 k+2

)(pyk

)3,2(kγ
)2(ˆ 1+kτ

)1,2(kγ

)3(ˆkτ

)2(1+kπ

)0(

)1(

)2(

)3(

)1(k̂τ
)1(kπ

)0,1(r̂

1ˆ −=a
1ˆ =a

)0,1(â

k-th stage

)1(k̂θ

)2(ˆ
1+kθ

Figure 28: The PR-IV trellis structure demonstrating how PSP-BCJR performs
during forward recursion.

The starting state associated with the best state transition leading to state 2 at

time k + 1 is chosen according to (B-8). Suppose (1, 2) is the best state transition

leading to state 2 at time k + 1 so that πk+1(2) = 1. We update the next forward

sampling phase offset, τ̂k+1(2), based on (B-9) – (B-11). This τ̂k+1(2) will be used to

sample y(t) at time k + 1 for the state transitions emanating from state 2 at time

k + 1.

4.5.2 Backward Recursion

The backward timing update operation serves as refining the samples {yk} so as to

improve the quality of the branch metrics. To explain how it works, we introduce

the backward transition represented by the gray arrows as shown in Figure 29. Let

πb
k+1(q) be a successor for state q at time k+1, defined as the starting state associated

with the best backward transition leading to state q at time k + 1. We define τ̂ b
k+1(q)

as the k-th backward sampling phase offset for state q at time k + 1, which is used

to sample y(t) at time k during backward recursion, e.g., yb
k(q) = y(kT + τ̂ b

k+1(q)).

57

-1 -1

 1 -1

-1 1

 1 1

time k-1 k k+1 k+2

)1(b
kπ

)0(

)1(

)2(

)3(
)3(ˆ 1

b
k+τ

)2(ˆ 1
b
k+τ

)2(1
b
k+π

)1(ˆb
kτ

)(qyb
k

)1,3(b
kγ

)1,2(b

k
γ

)2,0(r̂

)2,0(â

1ˆ −=a
1ˆ =a

k-th stage

)1(ˆb
kθ

)2(ˆ
1

b
k+θ

Figure 29: The PR-IV trellis structure illustrating how PSP-BCJR performs during
backward recursion.

We also define θ̂b
k+1(q) as the k-th backward frequency error for state q at time k + 1,

which will be used to update τ̂ b
k+1(q).

Consider the backward transition at the k-th stage. There are two backward

transitions arriving at state 1 at time k, which correspond to (1, 2) and (1, 3). We

first sample y(t) using τ̂ b
k+1(2) and τ̂ b

k+1(3) to obtain yb
k(2) and yb

k(3), respectively.

Then, we compute the metrics γb
k(1, 2) and γb

k(1, 3) based on (B-19), and update the

state information βk(1) using (B-20). Similarly, the starting state associated with the

best backward transition leading to state 1 at time k is selected according to (B-21).

Suppose (1, 2) corresponds to the best backward transition leading to state 1 at time

k so that πb
k(1) = 2. The next backward sampling phase offset, τ̂ b

k(1), is updated by

(B-22) – (B-24).

To avoid a cycle slip when τ̂ b
k(1) starts deviating from τ̂k(1), we propose a simple

remedy by averaging the backward sampling phase offset according to (B-25), where

∆ is the threshold that allows the backward sampling phase offset to deviate from the

58

forward one. In this work, we set ∆ = 0.1T because we want to keep {τ̂ b
k} close to

{τ̂k}. This τ̂ b
k(1) will be used to sample y(t) at time k−1 for the backward transitions

emanating from state 1 at time k. Finally, the a posteriori LLR of ak, λp
k, is computed

based on (B-27).

4.5.3 Complexity of PSP-BCJR

It is apparent that, for the precoded PR-IV channel, PSP-BCJR requires eight PLLs,

i.e., one PLL for each state in one stage of the trellis during both forward and back-

ward recursions. Furthermore, instead of storing the received analog signal y(t), we

could uniformly sample y(t) at symbol rate to obtain a set of samples {yk}. Then,

we can store only this set of samples because the bandlimited nature of y(t) makes

it sufficient statistics. Consequently, PSP-BCJR can perform the timing update op-

eration using {yk} and a digital interpolation filter, thus decreasing its complexity.

Unless otherwise specified, in this work, a 21-tap sinc interpolation filter is employed.

Beyond the conventional BCJR algorithm, PSP-BCJR needs new storage require-

ments for (i) the forward/backward sampling phase offsets, (ii) the forward/backward

frequency errors, (iii) the starting states, and (iv) the sampler outputs. However,

there is no need to store the whole sets of the backward sampling phase offsets, the

starting states, and the sampler outputs. In other words, only those of the current

and previous stages need to be stored, thus minimizing the need for extra memory.

To help quantify how much computational complexity PSP-BCJR contains, we

measure its complexity by counting the total number of additions and multiplications.

For other mathematical functions, such as log(x), exp(x), etc., we assume that they

can be implemented as lookup tables, and that we ignore their complexity.

Table 1 shows the complexity of each module that is employed in iterative timing

recovery schemes, where Nsinc is the total number of taps of the sinc interpolation

filter. The Nsinc-tap sinc interpolation filter is used to refine the samples for each

59

Table 1: The total number of operations of each module that is used in iterative
timing recovery schemes.

Module Number of operations
Addition Multiplication

Sinc interpolation (per sample) 4Nsinc − 1 Nsinc

PLL with hard decision (per sample) 2 3
PLL with soft decision (per sample) 3 6
BCJR equalizer (per bit) 12Q − 2 20Q + 1
PSP-BCJR (per bit) (14 + 8Nsinc)Q − 2 (26 + 2Nsinc)Q + 1

iteration according to (38), where the running indexes k and i are normalized with

respect to T . The number of operations of PLL is counted based on (18) for hard de-

cision, and (35) – (36) for soft decision. Note that PSP-BCJR performs interpolation

and the timing update operation at each state during both forward and backward

recursions. As shown in Table 1, it is obvious that PSP-BCJR has higher complexity

than the conventional BCJR algorithm, especially when Nsinc is large. This is due to

the timing update operation performed at each trellis state during both forward and

backward recursions.

4.6 Numerical Results and Discussion

The per-survivor iterative timing recovery scheme is easily obtained by discarding the

front-end PLL in Figure 25 and replacing the BCJR equalizer with PSP-BCJR.

Consider a rate-8/9 system in which a block of 3636 message bits is encoded

by a rate-1/2 recursive systematic convolutional (RSC) encoder with a generator

polynomial [1, 1⊕D⊕D3⊕D4

1⊕D⊕D4], and is then punctured to a block length of 4095 bits by

retaining only every the eighth parity bit. The punctured sequence passes through an

s-random interleaver with s = 16 to obtain an interleaved sequence of ak. Both the

SISO equalizer and the SISO decoder are implemented based on a BCJR algorithm.

Again, the PLL gain parameters for different iterative timing recovery schemes were

60

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

(a) E
b
/N

0
 (dB)

B
E

R

Conventional receiver (1, 100)

NBM scheme (50, 100) Perfect
timing (50)

Genie−aided
receiver (50)

Per−survivor iterative
timing recovery (50)

1 iteration

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

(b) E
b
/N

0
 (dB)

B
E

R Perfect
timing (50)

Genie−aided
receiver (50)

Per−survivor iterative
timing recovery (20, 50)

NBM scheme (50, 100)

Conventional receiver (1, 100)

Figure 30: Performance comparison of different iterative timing recovery schemes
for (a) σw/T = 0.5% and (b) σw/T = 1%.

optimized based on minimizing σε/T at Eb/N0 = 5 dB. Each BER point was computed

using as many data sectors as possible until at least 100 sectors in error were collected

at the 100-th iteration.

Figure 30(a) compares the BER performance of different iterative timing recovery

schemes with σw/T = 0.5%, which implies a low probability of occurrence of a cycle

slip. Note that the number inside the parenthesis in Figure 30 indicates the total

61

number of iterations used to generate each curve. The curve labeled “Perfect timing”

represents the conventional receiver that uses τ̂k = τk to sample y(t). Furthermore,

the curve labeled “Genie-aided receiver” represents the conventional receiver whose

PLL has access to all correct decisions, thus serving as a lower bound for a timing

recovery scheme that is based on a PLL. The ξ’s for the conventional receiver, the

NBM scheme, per-survivor iterative timing recovery, and the genie-aided receiver are

0.0053, 0.0053, 0.0028, and 0.0036, respectively. As depicted in Figure 30(a), per-

survivor iterative timing recovery performs slightly better than the NBM scheme at

the 50-th iteration, and both yield about a 0.45 dB gain at BER = 10−5 over the

conventional receiver. Note that the performances of the conventional receiver at

the 50-th and the 100-th iterations are alike (not shown). In addition, per-survivor

iterative timing recovery performs nearly as well as the genie-aided receiver and is

only a 0.35 dB away from the system with perfect timing at BER = 10−5.

Next, let us consider the system with a severe random walk parameter σw/T =

1%, which implies a high probability of occurrence of a cycle slip. The ξ’s for the

conventional receiver, the NBM scheme, per-survivor iterative timing recovery, and

the genie-aided receiver are 0.0103, 0.0103, 0.006, and 0.007, respectively. Figure

30(b) shows the BER performance of different iterative timing recovery schemes with

σw/T = 1%. The NBM scheme still outperforms the conventional receiver; however,

it seems to have an error floor at high BER. On the other hand, per-survivor iterative

timing recovery yields a large performance gain over the NBM scheme and starts to

have an error floor at low BER. Again, per-survivor iterative timing recovery still

performs close to the genie-aided receiver and loses approximately a 0.35 dB relative

to the system with perfect timing at BER = 10−5.

The reason that per-survivor iterative timing recovery outperforms the NBM

scheme when σw/T is large might be because the front-end PLL used in the NBM

scheme does not work well if compared to PSP-based timing recovery, as studied in

62

1 10 20 30 40 50 60 70 80 90 100
10

−3

10
−2

10
−1

10
0

Number of iterations, k

S
E

R

Conventional receiver

NBM scheme

Per−survivor
iterative timin recovery

Trained PLL

Perfect timing

Figure 31: Convergence rate of different iterative timing recovery schemes at Eb/N0

= 5 dB and σw/T = 1%.

Section 3. Additionally, we observed that per-survivor iterative timing recovery can

automatically and rapidly correct a cycle slip (without a cycle slip detection and cor-

rection technique as employed in the NBM scheme [56]) much more efficiently than

the NBM scheme. In other words, per-survivor iterative timing recovery can achieve

faster convergence than the NBM scheme, which can be confirmed by plotting the

sector-error rate (SER) versus the number of iterations in Figure 31. It is evident

that the convergence rate of per-survivor iterative timing recovery is very close to

that of the genie-aided receiver, which takes about 30 iterations to provide a good

performance. Conversely, the NBM scheme takes hundreds of iterations to yield a

good performance (not shown).

We also plot the probability of an uncorrected cycle slip in Figure 32, where we

declare a cycle slip when the actual timing offset and the estimated one are 0.75T

apart from each other for more than 100 consecutive bit periods. This plot will show

how fast each scheme can correct a cycle slip. Apparently, the NBM scheme requires

a large number of iterations to correct a cycle slip as opposed to per-survivor iterative

63

1 10 20 30 40 50 60 70 80 90 100

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of iterations, k

P
ro

ba
bi

lit
y

of
 a

n
un

co
rr

ec
te

d
cy

cl
e

sl
ip

Per−survivor iterative timing recovery

NBM scheme

Figure 32: Probability of an uncorrected cycle slip at Eb/N0 = 5 dB and σw/T = 1%.

timing recovery. The reason for this might be because the NBM scheme can correct

a cycle slip only when there is a sudden phase change in the estimated timing offsets,

not in the actual timing offsets. It should be noted that the reason that the NBM

scheme increases the probability of an uncorrected cycle slip at the first 10 iterations

(see Figure 32) might possibly be because the NBM scheme takes a few iterations for

the cycle slip detection algorithm to recognize a cycle slip according to our cycle slip

criterion.

It is also worth plotting the estimated timing offset obtained from the NBM scheme

and per-survivor iterative timing recovery for two different sample packets as depicted

in Figure 33. As illustrated in Figure 33(a), the NBM scheme takes about 150 it-

erations to correct a cycle slip (not shown), whereas per-survivor iterative timing

recovery takes only one iteration. This implies that the NBM scheme corrects a cycle

slip slowly. Similarly, Figure 33(b) indicates that per-survivor iterative timing recov-

ery can correct a cycle slip within 5 iterations but the NBM scheme cannot correct

a cycle slip even with 50 iterations. This suggests that per-survivor iterative timing

recovery can correct a cycle slip quickly. In conclusion, per-survivor iterative timing

64

0 500 1000 1500 2000 2500 3000 3500 4000
−0.8T

−0.6T

−0.4T

−0.2T

0

0.2T

0.4T

0.6T

0.8T

T

(a) Time (in bit periods)

T
im

in
g

E
st

im
at

e

1

50

100
150

Per−survivor
iterative timing recovery (1) Actual τ

NBM scheme

0 500 1000 1500 2000 2500 3000 3500 4000
−0.5T

0

0.5T

T

1.5T

2T

2.5T

(b) Time (in bit periods)

T
im

in
g

E
st

im
at

e

2

5

1

NBM scheme (50)

Actual τ

Per−survivor
iterative timing recovery

Figure 33: Cycle slip correction for two different sample packets at Eb/N0 = 5 dB
and σw/T = 1%.

recovery is a good scheme to employ in a system that experiences a high probability

of occurrence of a cycle slip.

4.6.1 Complexity Versus Performance

To compare the complexity of different iterative timing recovery schemes, we include

the complexity of the SISO decoder. Let χ be code memory of a convolutional code,

65

Table 2: The total number of operations of each iterative timing recovery scheme
for a coded PR-IV channel.

Schemes Number of operations (per bit)
Addition Multiplication Total

Conventional receiver 86 + 330N 27 + 595N 113 + 925N
NBM scheme 416N 622N 1038N
Per-survivor iterative 1010N 787N 1797N
Genie-aided receiver 85 + 330N 24 + 595N 109 + 925N
Perfect timing 83 + 330N 21 + 595N 104 + 925N

which is equal to 4 (see the generator polynomial given in Section 4.6). Thus, the SISO

decoder implemented based on the BCJR algorithm will have S = 2χ = 16 states in

one trellis stage. It can be shown that the BCJR decoder requires 18S − 4 additions

and 32S + 2 multiplications. Based on Table 1, we can then count the total number

of operations of each iterative timing recovery scheme for Q = 4, Nsinc = 21, and

S = 16, as illustrated in Table 2, where N is the number of iterations. Assuming that

addition and multiplication have the same complexity, Figure 34 compares the total

number of operations of each scheme. Clearly, per-survivor iterative timing recovery

has much higher complexity than the others, and the NBM scheme has complexity

comparable to the conventional receiver (as stated in [56]).

It is worth comparing the performance of different iterative timing recovery schemes

when they approximately have the same complexity. To do so, we first assume that

the current technology can support the total number of operations equal to 5 itera-

tions of per-survivor iterative timing recovery. As shown in Table 2, it can be shown

that per-survivor iterative timing recovery with 5 iterations has the total number of

operations approximately equal to the conventional receiver with 10 iterations, the

NBM scheme with 9 iterations, the genie-aided receiver with 10 iterations, and the

system with perfect timing with 10 iterations.

Figure 35 compares the performance of different iterative timing recovery schemes

66

1 5 10 15 20 25 30
10

3

10
4

Number of iterations, k

T
ot

al
 n

um
be

r
of

 o
pe

ra
tio

ns
 (

pe
r

bi
t)

Per−survivor iterative
timing recovery

Conventional receiver
Genie−aided receiver
Perfect timing

NBM scheme

Figure 34: Complexity comparison of different iterative timing recovery schemes for
Nsinc = 21, Q = 4, and S = 16.

when they approximately have the same complexity for systems with σw/T = 0.5%

and σw/T = 1%. As shown in Figure 35(a), per-survivor iterative timing recovery

still performs better than the conventional receiver and it performs as well as the

NBM scheme. This suggests that there is no need to use per-survivor iterative timing

recovery when a channel experiences a low probability of occurrence of a cycle slip.

A simple iterative timing recovery scheme like the NBM scheme can provide a good

performance with complexity comparable to the conventional receiver. On the other

hand, per-survivor iterative timing recovery can provide a large performance gain

over the NBM scheme when operating in a system with σw/T = 1%, as depicted

in Figure 35(b). This gain comes from the fact that per-survivor iterative timing

recovery can correct a cycle slip rapidly, as opposed to the NBM scheme. Therefore,

it can be concluded that, for low to moderate complexity, per-survivor iterative timing

recovery still performs better than conventional schemes, especially when operating

in a system that experiences a high probability of occurrence of a cycle slip (e.g., a

system with large timing errors).

67

4 4.25 4.5 4.75 5 5.25 5.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

(a) E
b
/N

0
 (dB)

B
E

R

Conventional receiver (10)

NBM scheme (9)

Genie−aided receiver (10)

Perfect timing (10)

Per−survivor iterative
timing recovery (5)

4 4.25 4.5 4.75 5 5.25 5.5 5.75 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

(b) E
b
/N

0
 (dB)

B
E

R

Conventional receiver (10)

Genie−aided receiver (10)

Perfect timing (10)

NBM scheme (9)

Per−survivor iterative
timing recovery (5)

Figure 35: BER performance of different iterative timing recovery schemes when
they approximately have the same complexity for system with (a) σw/T = 0.5% and
(b) σw/T = 1%.

Note that the results presented in this section are based on a system whose ECC

is a convolutional code. Thus, the SISO decoder implemented based on the BCJR

algorithm has very high complexity (i.e., it requires 284 additions and 514 multiplica-

tions per bit). Although other ECCs (e.g., a low-density parity-check (LDPC) code

[26]) might be used to reduce the complexity of the SISO decoder, similar results are

68

still obtained. Consequently, we would like to point out that conclusion drawn from

this section is still valid for any ECC.

4.7 Reduced-Complexity PSP-BCJR

Because the BCJR algorithm performs on the same trellis as the Viterbi algorithm

does, many approaches have been proposed [16, 25, 78] to reduce its complexity,

including the M- and T- algorithms [25] (similar to the ones presented in Section

3.6). In this section, however, we again focus only on the M- and T- algorithms to

reduce the complexity of PSP-BCJR because of their simplicity.

4.7.1 The M-algorithm

At each time instant, the M-algorithm first finds the maximum path metric leading

to each trellis state. Note that we can consider the state information (i.e., αk(p) or

βk(p)) at each state as the path metric. Then, it retains only the M (M must be

less than the total number of states in one stage of the trellis) paths with the highest

path metrics among all paths; the rest are declared dead and their corresponding

state information are set to zero. The same procedure is also applied to the backward

recursion. Because the LLR output, λp
k, (see (B-27) in Figure 27) is the products of

the state information, it is then simpler to operate the backward recursion only on

the region of the trellis where the forward components are alive.

4.7.2 The T-algorithm

Again, we can consider the state information (i.e., αk(p) or βk(p)) at each state as the

path metric, and we must normalize the state information at each time instant so that

the summation of all state information is one, i.e.,
∑

p αk(p) = 1 and
∑

p βk(p) = 1.

Then, the T algorithm discards all paths whose path metrics fall below a threshold

T; the rest are declared dead and their corresponding state information are set to

zero. Similarly, the backward recursion can only operate through the region where

69

the forward components are alive.

4.7.3 Performance Comparison

To compare the performance of per-survivor iterative timing recovery with different

reduced-complexity approaches, we again consider the SER and the average number

of searched states, as used in Section 3.6.3.

Figure 36 compares the performance of per-survivor iterative timing recovery with

different reduced-complexity approaches at the 10-th iteration with σw/T = 0.5%. As

expected, there is a trade-off between the SER and the average number of searched

states. In other words, the larger the average number of searched states, the lower

the SER. At low Eb/N0, the M-algorithm does not perform well (same reasons as

explained in Section 3.6.3). For this specific channel model, although the M-algorithm

with M = 3 and the T-algorithm with T = 0.00001 are comparable in terms of SER

at Eb/N0 ≈ 5 dB, the T-algorithm is preferred because it requires a fewer number of

searched states. We also observed that a similar result is obtained for any σw/T .

4.7.4 Note on Complexity Reduction of PSP-BCJR

We can even further reduce the complexity of PSP-BCJR with negligible performance

loss, which can be explained as follows.

• As shown in Table 1, the complexity of PSP-BCJR partly depends on Nsinc. A

small Nsinc can be used to reduce the complexity of PSP-BCJR at the expense

of some performance loss. Alternatively, we can utilize other interpolation fil-

ters that have a fewer number of taps but still provide a good performance, if

compared against a 21-tap sinc interpolation filter. A minimum mean-squared

error (MMSE) interpolation filter [87] can be given as an example, which can

yield a good performance with only 8 taps.

• We have observed through simulation that the sampling phase offset associated

70

4 4.25 4.5 4.75 5 5.25 5.5
10

−3

10
−2

10
−1

10
0

(a) E
b
/N

0
 (dB)

S
E

R

Full−complexity
T = 0.0001
T = 0.00001
M = 2
M = 3

4 4.25 4.5 4.75 5 5.25 5.5
1

1.5

2

2.5

3

3.5

4

(b) E
b
/N

0
 (dB)

A
ve

ra
ge

 n
um

be
r o

f s
ea

rc
he

d
st

at
es

T = 0.0001
T = 0.00001
M = 2
M = 3

Figure 36: Performance comparison of per-survivor iterative timing recovery with
different reduced-complexity approaches at the 10-th iteration with σw/T = 0.5%.

with each state in one trellis stage is close to one another. Therefore, it might

be possible to utilize only those with the highest and the lowest values, say

τ̂max
k and τ̂min

k , to obtain the sampler outputs, say ymax
k and ymin

k . Then, the

other sampler outputs associated with the other sampling phase offsets can be

obtained by means of linear interpolation, based on τ̂max
k , τ̂min

k , ymax
k , and ymin

k .

This will help reduce the complexity of PSP-BCJR considerably.

71

4.8 Extrinsic Information Transfer (EXIT) Chart

Performance analysis of iterative timing recovery schemes is difficult because of their

complexity. Accordingly, a time-consuming simulation in terms of BER is practically

a solution to compare their performances as presented in Section 4.6.

The extrinsic information transfer chart (EXIT chart) was proposed by ten Brink

[80] as a tool for predicting the convergence behavior of turbo codes [10, 30]. The key

idea is that the SISO equalizer and the SISO decoder in an iterative receiver can be

modeled as devices mapping the extrinsic information from its input to its output.

Because the output of one SISO module is an input to the other SISO module and

vice versa, these two transfer characteristics can be plotted in a single diagram with

the axes of the decoder transfer characteristic swapped. Furthermore, the exchange

of extrinsic information can be visualized as a system trajectory between these two

transfer characteristics, which can be accurately used to predict the performance of

iterative decoding schemes without simulating data transmission on the complete

iterative receiver [80].

Recently, the EXIT chart has been employed to analyze the performance of turbo

equalization as studied in [79] for the case of a known, time-invariant channel, and in

[61] for the adaptive turbo equalization, both assuming that the synchronization is

perfect. In this section, we will demonstrate how the EXIT chart can also be used to

predict the performance of the system with imperfect synchronization or, specifically,

the iterative timing recovery scheme. We also validate the use of the EXIT chart

instead of BER as a convenient measure to compare the performance of different

iterative timing recovery schemes, considering that the BER computation takes a

considerable amount of simulation time.

72

q(t) LPF

n(t)

kr y(t)
kτ21 D−Encoder

PLL

kkT τ̂+
kx p(t) kykc SISO

equalizer
SISO

decoder

kx̂

)(kD cL kλ

)(kE cLTiming recovery

Figure 37: A system model for the EXIT chart analysis.

4.8.1 EXIT Chart for Iterative Timing Recovery

To simplify our discussion, we consider the system model shown in Figure 37 and

assume perfect acquisition. Because our model has no frequency offset component,

the sampling phase offset can then be updated by a first-order PLL as given in (35).

The SISO equalizer takes the channel observations {yk} and the a priori informa-

tion LD(ck) to output the extrinsic information LE(ck), which becomes the a priori

input for the SISO decoder. The SISO decoder outputs soft values {λk} and feeds

back the extrinsic information LD(ck) = λk −LE(ck) to become the a priori input of

the SISO equalizer. Note that the variables L and λ are LLRs.

The analysis tool called the EXIT chart is used to graphically describe the con-

vergence behavior of the iterative decoding scheme by investigating the exchange of

mutual information between the equalizer and the decoder. To obtain the EXIT

chart, the mutual information at the equalizer output, Iout
E = I(LE(ck); ck), and at

the decoder output, Iout
D = I(LD(ck); ck), is needed, where the mutual information is

defined as [80]

I(L; C) =
1

2

∑
c∈{±1}

∫ ∞

−∞
p(l|c) · log2

(
2p(l|c)

p(l|1) + p(l| − 1)

)
dl, (39)

where p(l|c) = p(l|C = c) denotes a probability density function (pdf) of the extrinsic

information L given that c was transmitted. The range of I(L; C) is [0, 1], where

I(L; C) = 0 or I(L; C) = 1 means no or perfect knowledge of the transmitted bit

c. Equation (39) is evaluated by first calculating the histograms of ckL(ck) so as to

73

estimate p(l|1) and p(l| − 1). Hence, I(L; C) is obtained by numerically computing

the integral in (39).

4.8.2 Simulation Setup

Figure 38 shows a simulation setup for generating the mutual information transfer

characteristics of the conventional receiver. The a priori information is usually mod-

eled as a normal distribution with average value ckσ
2
A/2 and variance σ2

A [80]. The

mutual information at the input of the SISO module is evaluated using (39), which,

for an i.i.d. binary sequence, reduces to [80]

IA(σA) = 1 −
∫ ∞

∞
e−(l−σ2

A/2)2/(2σ2
A)

√
2πσA

· log2(1 + e−l)dl. (40)

Clearly, IA is independent of the corresponding transmitted bits. Thus, it can be

precomputed and tabulated.

To obtain the decoder transfer characteristic, a simulation setup shown in Fig-

ure 38(a) is used. By varying σ2
A so that IA ranges from 0 to 1, the decoder transfer

characteristic (a plot between IA and Iout
D) is obtained. Similarly, the equalizer trans-

fer characteristic (a plot between IA and Iout
E) of the conventional receiver can be ob-

tained by running a simulation in Figure 38(b), where the data bits {ck} are randomly

generated without the encoder. Then, the EXIT chart is realized by combining the

transfer characteristics of the equalizer and the decoder into a single diagram where

the axes of the decoder are swapped. The exchange of the mutual information, Iout
E

and Iout
D , over the iterations in the complete receiver can be visualized as a system

trajectory in the EXIT chart [80].

To obtain the equalizer transfer characteristic of the NBM scheme, the simulation

setup in Figure 38(b) needs to be modified as illustrated in Figure 39, where λk =

LD(ck) + L′
E(ck) is the LLR at the output of the SISO decoder. Given {λk}, the soft

estimates {r̃k} for the PR-IV channel can be expressed as [34]

r̃k = E[rk|{λk}] =
2(eλk − eλk−2)

(1 + eλk)(1 + eλk−2)
. (41)

74

Encoder
kx kc

q(t) LPF

n(t)

kr
kτ21 D− Timing

recovery
SISO

equalizer
ky

SISO
decoder

y(t)

),
2

(2
2

A
AN σσ

kc

(a) Decoder

(b) Equalizer

kx̂

),
2

(2
2

A
AN σσ

kλ)(kD cL

)(kE cL

)(kD cL

)(kE cL

Figure 38: Simulation setup for generating the mutual information transfer charac-
teristics of the conventional receiver for (a) the decoder and (b) the equalizer.

new
kτ̂

kr
~

PLL

Compute
Soft

Decision

Interpolation

{ }kky τ̂, new
ky

kλ
SISO

equalizer

)('
kE cL

SISO
equalizer

)(kD cL

)(kE cL

Figure 39: Simulation setup for generating the equalizer transfer characteristic of
the NBM scheme.

The second PLL uses these soft estimates and the original samples {yk} to output an

improved set of the sampling phase offsets, {τ̂new
k }, which will be used to resample

{yk} by means of interpolation according to (38). A new set of the samples, {ynew
k },

is then used to compute the equalizer transfer characteristic.

Finally, for the equalizer transfer characteristic of per-survivor iterative timing

recovery, we only replace the timing recovery block and the SISO equalizer in Fig-

ure 38(b) with a PSP-BCJR module and then run a simulation to generate the equal-

izer transfer characteristic as described earlier.

75

4.8.3 Predicted Bit-Error Rate

As shown in (40), there is one-to-one mapping between σ2
A and IA. Thus, if we define

[80]

J(σ) := IA(σA = σ) (42)

with

lim
σ→0

J(σ) = 0 and lim
σ→∞ J(σ) = 1, for σ > 0, (43)

it is true that

σA = J−1(IA) (44)

because IA is monotonically increasing in σA and thus reversible [80]. It should be

noted that the relationship in (44) is also valid for the mutual information at the

output of both the equalizer and the decoder [80].

Consequently, we can predict the BER performance evaluated at the SISO decoder

output, whose LLR is given by λk = LE(ck) + LD(ck), as follows. Assuming that λ

and L are Gaussian distributed and independent, we can write

σ2
λ = σ2

E + σ2
D, (45)

where

σ2
E ≈ (J−1(I in

D))2, (46)

σ2
D ≈ (J−1(Iout

D))2, (47)

and I in
D = Iout

E .

For simplicity, we also assume that λ ∼ N (σ2
λ/2, σ

2
λ). With the complementary

error function [8], the error probability at the output of the SISO decoder, Pe, can be

approximately expressed as [34]

Pe ≈ 1

2
erfc

(
σλ

2
√

2

)

≈ 1

2
erfc

⎛
⎝
√

(J−1(I in
D))2 + (J−1(Iout

D))2

2
√

2

⎞
⎠ . (48)

76

4.8.4 Performance Comparison

Consider a rate-8/9 system in which a block of 3640 message bits is encoded by

a regular (3, 27) LDPC code [26], resulting in a coded block length of 4095 bits.

The parity-check matrix has 3 ones in each column and 27 ones in each row. With

an LDPC outer code, the interleaver is not needed. Note that an LDPC code is

considered in this section instead of a convolution code (as used in Section 4.6) because

we want to show that all results presented in this work are also valid for any ECC.

The SISO equalizer is implemented based on a BCJR algorithm [5], whereas the

SISO decoder is implemented based on the message passing algorithm [26] with 5

internal iterations. The PLL gain parameters for different iterative timing recovery

schemes were optimized based on minimizing σε/T at Eb/N0 = 5 dB. Each point in

the EXIT chart is obtained by averaging the extrinsic output pdf’s over Nb = 1000

blocks according to

p(l|C = ±1) =
1

Nb

Nb∑
i=1

pi(l|C = ±1). (49)

Note that we observed that the EXIT chart analysis cannot be used to predict the

performance of iterative timing recovery schemes when a cycle slip occurs because

Iout
E will decrease drastically. To demonstrate that all benefits obtained from the

EXIT chart analysis are still valid for iterative timing recovery schemes, only the

data blocks that contain no cycle slip will be used to generate the EXIT chart.

We first consider the system at Eb/N0 = 5 dB with a moderate random walk

parameter σw/T = 0.5%, which implies a low probability of occurrence of a cycle slip.

The ξ’s for the conventional receiver, the NBM algorithm, and per-survivor iterative

timing recovery are 0.0053, 0.0053, and 0.0028, respectively. Figure 40 depicts the

EXIT chart of different iterative timing recovery schemes and its corresponding BER

plot. The dashed arrows in Figure 40(a) describe the system trajectory of the system

with perfect timing (using τ̂k = τk to sample y(t)). The iteration starts at the (0, 0)

point where the equalizer has no a priori information so that I in
E = 0, and ends at

77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

 I Eou
t =

 I
Din

(a) I
D
out = I

E
in

Perfect timing

Decoder

Conventional receiver

NBM scheme

Per−survivor
iterative timing recovery

1

2

1 2 3 4 5
10

−5

10
−4

10
−3

10
−2

10
−1

(b) Number of iterations, k

B
E

R

Perfect timing

Conventional receiver

NBM scheme

Per−survivor iterative
timing recovery

Figure 40: (a) The mutual information transfer characteristics of different iterative
timing recovery schemes and (b) their corresponding BER curves at Eb/N0 = 5 dB
and σw/T = 0.5%.

the point where the equalizer transfer characteristic intersects the decoder one. Note

that we refer to the first pass through the decoder as the first iteration. As expected,

for a given number of iterations, the system with perfect timing yields the largest Iout
D

or, equivalently, the lowest BER, followed by per-survivor iterative timing recovery,

the NBM scheme, and the conventional receiver. Apparently, the higher the Iout
D , the

78

smaller the BER.

We also show the system trajectory of different schemes with two different coded

block lengths in Figure 41. Clearly, the longer the coded block length, the better

the system trajectory matches the transfer characteristics. This is because the EXIT

chart analysis assumes that all LLRs are independent, and thus it is valid only for an

infinite block length [80].

Next, we consider the system at Eb/N0 = 5 dB with a severe random walk pa-

rameter σw/T = 1%, which implies a high probability of occurrence of a cycle slip.

The ξ’s for the conventional receiver, the NBM scheme, and per-survivor iterative

timing recovery are 0.0103, 0.0103, and 0.006, respectively. The EXIT chart of dif-

ferent iterative timing recovery schemes and its corresponding BER plot are depicted

in Figure 42. Clearly, there is a big performance gap between per-survivor itera-

tive timing recovery and the NBM scheme. This implies that per-survivor iterative

timing recovery outperforms the NBM scheme when the timing error is large (same

conclusion as presented in Section 4.6).

Finally, Figure 43 plots the Eb/N0 (in dB) required to achieve BER = 10−4 at the

decoder output at the 2-nd iteration as a function of σw/T ’s. The solid lines are the

predicted BER computed from (48), whereas the dashed lines are the BER obtained

by simulating data transmission over the complete iterative receiver. As expected,

per-survivor iterative timing recovery performs better than the NBM scheme, and

both outperforms the conventional receiver, especially when the timing error is large.

Obviously, there is a big gap between the predicted BER and the simulated one.

However, we observed that this gap gets smaller when using a larger coded block

length. Again, this is because the EXIT chart analysis is based on the assumption

that the coded block length is infinite [80]. Nonetheless, for a small coded block length,

we can use the predicted BER as a practical bound on the achievable performance.

In addition, we also observed that all benefits obtained from the EXIT chart

79

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

 I
Eo

u
t =

I Din

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

 I
Eo

u
t =

I Din

 I
D
out = I

E
in

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

 I
D
out = I

E
in

Perfect timing Conventional receiver

NBM scheme Per−survivor iterative
timing recovery

4095 bits/block

20475 bits/block

Figure 41: System trajectories of different iterative timing recovery schemes at
Eb/N0 = 5 dB and σw/T = 0.5%, where the solid lines are based on the coded block
length of 4095 bits, and the dashed lines are based on the coded block length of 20475
bits.

analysis as investigated in [80] (e.g., finding the SNR threshold, evaluating the effect

of the different constituent codes, etc.) are also valid for iterative timing recovery

schemes, assuming that there is no cycle slip. Therefore, it is sufficient to use the

EXIT chart as a convenient means to compare the performance of different schemes

because it requires much less simulation time than a BER criterion.

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

 I Eou
t =

 I
Din

(a) I
D
out = I

E
in

Perfect timing

Decoder

Conventional receiver

NBM scheme

Per−survivor
iterative timing recovery

1 2 3 4 5
10

−5

10
−4

10
−3

10
−2

10
−1

(b) Number of iterations, k

B
E

R

Perfect timing

Conventional receiver

NBM scheme

Per−survivor
iterative timing recovery

Figure 42: (a) The mutual information transfer characteristics of different iterative
timing recovery schemes and (b) their corresponding BER curves at Eb/N0 = 5 dB
and σw/T = 1%.

4.9 Exploring Per-Survivor Iterative Timing Re-

covery

In this section, we answer some interesting questions related to per-survivor iterative

timing recovery, which can be classified as follows.

(i) Why does per-survivor iterative timing recovery perform better than the NBM

81

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

E
b/N

0 re
qu

ire
d

to
 a

ch
ie

ve
 B

E
R

 =
 1

0 −
4 (i

n
dB

)

σ
w

/T (%)

Perfect timing
Conventional receiver
NBM scheme
Per−survivor iterative timning recovery

Predicted

Simulated

Figure 43: Eb/N0 (in dB) required to achieve BER = 10−4 at the decoder output
at the 2-nd iteration as a function of σw/T ’s.

scheme? The reasons for this question might be as follows.

– The front-end PLL used in the NBM scheme does not work well if com-

pared to PSP-based timing recovery. To verify this statement, we run a

simulation based on an uncoded PR-IV channel model shown in Figure 4.

Figure 44 plots the percentage of occurrence of a cycle slip at Eb/N0 =

5 dB, where ξ’s were optimized based on minimizing σε/T for each σw/T

at Eb/N0 = 5 dB. Clearly, PSP-based timing recovery experiences a fewer

number of cycle slips than conventional timing recovery, especially when

σw/T is large.

– Whenever there is some confidence on the data bits, per-survivor iterative

timing recovery tends to correct a cycle slip much more efficiently than

the NBM scheme. This can be validated by plotting the probability of an

uncorrected cycle slip as a function of the mutual information of the a priori

information of the input of the SISO equalizer, {I(LD(ck); ck)}, based on

82

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

5

10

15

20

25

σ
w

/T (%)

P
er

ce
nt

ag
e

of
 o

cc
ur

re
nc

e
of

 a
 c

yc
le

 s
lip

 (%
)

PSP−based timing recovery

Conventional timing recovery
with soft estimates

Figure 44: Percentage of occurrence of a cycle slip for an uncoded PR-IV channel
at Eb/N0 = 5 dB.

a coded PR-IV channel model (without a precoder) with σw/T = 1% and

Eb/N0 = 5 dB. We use the same receiver architecture for the NBM scheme

as shown in Figure 39. We count the number of cycle slips directly at the

output of the SISO equalizer at the first pass (i.e., no need to perform

error-correction decoding). It is evident that the NBM scheme can correct

a cycle slip only when I(LD(ck); ck) is high enough. This corresponds to the

situation that the NBM scheme performs after a large number of iterations.

That is why the NBM scheme requires a large number of iterations to

provide a good performance when the timing jitter is large.

– The NBM scheme tends to slow down the convergence rate of the system,

especially when the confidence of the a priori information of the input

of the SISO equalizer, {LD(ck)}, is small. To justify this statement, we

consider the receiver architecture shown in Figure 39 and assume that all

the signs of {LD(ck)} are correct but their corresponding magnitudes are

the parameters that we are considering. The NBM scheme uses {LD(ck)}

83

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

−4

10
−3

10
−2

10
−1

Mutual information of the a priori information of the SISO equalizer input

P
ro

ba
bi

lit
y

of
 a

n
un

co
rr

ec
te

d
cy

cl
e

sl
ip

Per−survivor iterative
timing recovery

NBM scheme

Figure 45: Probability of an uncorrected cycle slip as a function of the mutual
information of the a priori information of the SISO equalizer input (σw/T = 1% and
Eb/N0 = 5 dB).

Table 3: Soft estimate computation for a PR-IV channel based on (41).

|LD(ck)| r̃k

0.1 {0,±0.0999}
1 {0,±0.9242}
2 {0,±1.5232}
5 {0,±1.9732}
10 {0,±1.9988}

to compute the soft estimates, which will then be used to refine the samples.

As shown in Table 3, the NBM scheme needs large |LD(ck)| to produce a

soft estimate close to the actual value of r̂k ∈ {0,±2}. In other words,

we can write r̃k = Kr̂k, where 0 < K ≤ 1 is a scaling factor determining

the confidence of {LD(ck)}. By substituting r̃k = Kr̂k in the PLL update

equation of the NBM scheme given in (35), one obtains

τ̂k+1 = τ̂k + ξeff
3T

16
{ykr̂k−1 − yk−1r̂k}, (50)

where ξeff = Kξ, which is always less than or equal to ξ. This suggests

84

that the NBM scheme will slow down the convergence rate of the system

when |LD(ck)| is small. Unlike the NBM scheme, we observed that the

timing update operation in per-survivor iterative timing recovery is likely

to perform on the correct decision even if |LD(ck)| is not large enough,

as required in the NBM scheme. Therefore, per-survivor iterative timing

recovery is less likely to slow down the convergence rate of the system than

the NBM scheme.

– We observed that the NBM scheme gradually corrects a cycle slip at the

beginning of a cycle slip (from left to right), whereas per-survivor iterative

timing recovery randomly corrects a cycle slip as illustrated in Figure 46,

where the dots represent the errors occurred at each location in the data

packet at the output of the SISO equalizer. The number labeled on each

dotted line is the total number of errors occurred at the output of the SISO

equalizer. Because the NBM scheme can only correct a cycle slip at the

beginning of a cycle slip, it then requires a large number of iterations to

correct a cycle slip, especially when a cycle slip occurs at the very beginning

of the data packet.

(ii) Why do we average the backward sampling phase offset? Why do we use (B-

25) (see Figure 27) as a criterion? The answers to these questions might be as

follows.

– We proposed to average the backward sampling phase offset, τ̂ b
k(p), with

the forward one, τ̂k(p), because we want to avoid a cycle slip that might

happen when τ̂ b
k(p) starts deviating from τ̂k(p). An explanation for this

is possible. Suppose we let A be the event that a cycle slip is occurred

during forward recursion and B be the event that a cycle slip is occurred

during backward recursion. Therefore, if A and B are independent (i.e.,

85

500 1000 1500 2000 2500 3000 3500 4000

1

10

20

30

40

50

(a) Time (in bit periods)

N
um

be
r

of
 it

er
at

io
ns

Actual τ

Estimated τ

826

720

672

587

509

459

500 1000 1500 2000 2500 3000 3500 4000

1

2

3

4

5

6

(b) Time (in bit periods)

N
um

be
r o

f i
te

ra
tio

ns

Actual τ

Estimated τ

1295

242

126

64

31

11

Figure 46: Error positions at each iteration for (a) the NBM scheme and (b) per-
survivor iterative timing recovery at Eb/N0 = 5 dB and σw/T = 1%.

corresponding to without averaging), the probability that these two events

are occurred on the same packet can be written as

Pr[A ∪ B] = Pr[A] + Pr[B]. (51)

On the other hand, if A and B are dependent (i.e., corresponding to our

averaging criterion), the probability that these two events are occurred will

86

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

5

10

15

20

25

P
er

ce
nt

ag
e

of
 o

cc
ur

re
nc

e
of

 a
 c

yc
le

 s
lip

 (%
)

σ
w

/T (%)

PSP−BCJR
with averaging

PSP−BCJR
without averaging

Figure 47: Percentage of occurrence of a cycle slip as a function of σw/T ’s for the
precoded PR-IV channel at Eb/N0 = 5 dB.

be

Pr[A ∪ B] = Pr[A] + Pr[B] − Pr[A ∩ B]. (52)

Apparently, (52) is always less than or equal to (51) because Pr[A∩B] ≥ 0.

This suggests that averaging the backward sampling phase offset might

help reduce the probability of occurrence of a cycle slip, as illustrated in

Figure 47.

– Unlike the forward timing update operation where perfect acquisition is

assumed, we have no clue about the initial backward sampling phase offset,

τ̂ b
L+ν(p), that is used to start the backward timing update operation. Thus,

we initialize it equal to τ̂L+ν(p) according to (B-14). Similarly, at each

state during the backward timing update operation, we have no knowledge

about how reliable the state information (αk(p) and βk(p)) is. Therefore,

it is reasonable to assume that they are equally reliable. That is why we

average τ̂ b
k(p) according to (B-25). In addition, we observed that initializing

τ̂ b
L+ν(p) to the correct sampling phase offset does not help improve the

87

performance of PSP-BCJR significantly.

(iii) Is it a good idea to use the previous set of the timing estimates for the timing

update operation at the next iteration? The answer is “no,” which might be

possibly explained as follows.

– One key factor for the performance of PSP-BCJR is the path metric cal-

culation. This is because if the correct path (guided by the path metric)

is chosen, the timing update operation will be fully trained. Since the a

priori information, λk, at the input of the SISO equalizer (see Figure 25)

has great influence on the path metric calculation, if λk is correct (meaning

that it has the same sign as the k-th data bit, ak (see Figure 25), then it

is more likely that the correct path will be chosen for the timing update

operation. Therefore, we believe that it might be a good idea to rely only

on the a priori information when performing the timing update operation

at each iteration.

– Suppose the previous set of the timing estimates contains a cycle slip.

Hence, it will be definitely harmful to use this set of the timing estimates

in the timing update operation of the current iteration. Therefore, it is

better to rely only on the a priori information when performing the timing

update operation at each iteration.

4.10 Summary

We proposed a per-survivor version of the BCJR algorithm that performs timing

recovery and equalization jointly. With a per-survivor BCJR equalizer, we proposed

a per-survivor iterative timing recovery scheme to jointly perform timing recovery,

equalization, and error-correction decoding, for coded partial response channels.

Simulation results have shown that per-survivor iterative timing recovery performs

88

close to the genie-aided receiver, provided that the number of turbo iterations is large

enough. Furthermore, per-survivor iterative timing recovery also outperforms the

NBM scheme, especially when the timing error is large. This is because per-survivor

iterative timing recovery can automatically correct a cycle slip much more efficiently

than the NBM scheme. Several possible explanations were given to justify why per-

survivor iterative timing recovery performs better than other schemes. In addition,

it has been shown that for low to moderate complexity, per-survivor iterative timing

recovery still performs better than conventional schemes, especially when operating

in a system that experiences a high probability of occurrence of a cycle slip.

We also investigated the performance of a reduced-complexity version of PSP-

BCJR. We found that the M- and T- algorithms can be used to reduce the complexity

of PSP-BCJR with acceptable performance if their parameters are chosen suitably.

Apparently, there is a trade-off between the complexity and the BER performance.

Finally, we have showed that the EXIT chart can be equivalently used instead of

BER as a measure to compare the performance of different iterative timing recovery

schemes, assuming that there is no cycle slip. Specifically, the system performance

predicted by the EXIT chart coincides with that obtained by simulating data trans-

mission over the complete iterative receiver.

89

CHAPTER 5

APPLICATIONS TO MAGNETIC RECORDING

SYSTEMS

This chapter is dedicated to the application of magnetic recording systems. This

application is considered because magnetic recording is a primary method of storage

for a variety of applications, including desktop, mobile, and server systems. Timing

recovery in magnetic recording systems is an increasingly critical problem because

of the growing data rate to be supported. Improving the performance of timing

recovery will give rise to improved reliability of an entire recording system, which in

turn results in increased storage capacity.

The proposed timing recovery schemes presented in Chapters 3 and 4 will be inves-

tigated in magnetic recording systems (both longitudinal and perpendicular recording

channels [85]) and compared with the conventional schemes used in today’s mag-

netic recording read-channel chip architectures. This experiment will help us decide

whether or not the proposed schemes can be feasibly employed in real-life applications

as compared to conventional ones.

5.1 Background on Digital Magnetic Recording

Systems

Digital magnetic recording has been employed in many applications, including hard

disk drives, floppy disk drives, and tape drives. However, all applications are based

on the same fundamental principle, which involves a magnetic head and a recording

medium, as shown in Figure 48. An inductive head consists of a horseshoe-shaped soft

magnetic material with low coercivity and high permeability [85] around which coils

90

Medium

Write
current

Read
voltage

Write signal Readback signal

Write
head

Read
head

velocity

Figure 48: Schematic principle of magnetic recording.

are wound, and a recording medium that is normally comprised of a hard magnetic

material with high coercivity.

Two modes of magnetic recording are considered in this work, namely, longitudinal

recording [9] and perpendicular recording [77]. Today’s hard disk drive technology is

based on longitudinal recording in which the medium magnetization is parallel to

the disk plane, as shown in Figure 48. Recently, research on perpendicular recording

in which the medium magnetization is perpendicular to the disk plane has been of

increasing interest because of the potential for increased storage capacity [77]. It

is expected that perpendicular recording will be employed in the next generation of

hard disk drives.

5.1.1 Write Process

During the write process, the data bits are converted into a rectangular current wave-

form called a write current (see Figure 48). This write current is applied to the

windings of the write head to produce a magnetic write field in the medium near the

head gap. The write field must be larger than the medium coercivity to magnetize

the medium along the field direction. By switching the direction of the write field (or

91

the write current), magnetization transitions can be written in the medium.

Commercial digital recording systems normally employ binary saturation record-

ing, i.e., the magnetization saturated on the medium in only one direction or the

opposite. This is because if more than two data levels were recorded, nonlineari-

ties would cause a major problem and signal-to-disturbance ratios would diminish

considerably [9].

5.1.2 Read Process

During the read process, the read head senses the change in the flux via the transitions

of the magnetization pattern, resulting in an induced voltage pulse in the coil because

of Faraday’s law. For an isolated transition, the read head produces a read voltage

pulse, g(t), or its inverse, −g(t), depending on the direction of the transition (see

Figure 48). The pulse g(t) is commonly known as the transition response [9], which

has a finite amplitude and a finite half-amplitude pulse width.

The transition response for longitudinal recording (also known as the Lorentzian

pulse) is given by [9]

g(t) =
1

1 +
(

2t
PW50

)2 , (53)

where PW50 determines the width of g(t) at half of its peak value. For perpendicular

recording, we are interested in a transition response of the form [69]

g(t) = erf

(
2t
√

ln 2

PW50

)
, (54)

where erf(·) is an error function defined by erf(x) = 2√
π

∫ x
0 e−t2dt [42], and PW50

determines the width of the derivative of g(t) at half its maximum.

In the context of magnetic recording, the ratio ND = PW50/T (where T is the

bit duration) represents a normalized recording density [9], which defines how many

data bits can be packed within the resolution unit PW50. The transition responses

of longitudinal and perpendicular recording channels are plotted in Figure 49 for

92

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

(a) t/T

A
m

pl
itu

de

ND = 2
ND = 2.5
ND = 3

−5 −4 −3 −2 −1 0 1 2 3 4 5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) t/T

A
m

pl
itu

de

ND = 2
ND = 2.5
ND = 3

Figure 49: Transition responses for (a) longitudinal and (b) perpendicular recording.

different NDs. Clearly, the transition response spans many symbol intervals as ND

increases. This implies that the effect of ISI becomes more severe as ND increases.

Additionally, the response of the head to an isolated bit is commonly known as

the dibit response [9], which is expressed as m(t) = g(t)− g(t−T). It is easy to show

that the frequency response of m(t) for longitudinal recording is given by

M(Ω) = exp(−π|Ω|ND) · {1 − exp(−j2πΩ)}, (55)

93

whereas for perpendicular recording it is

M(Ω) =
T

jπΩ
· exp

(
−π2Ω2ND2

ln 16

)
· {1 − exp(−j2πΩ)}, (56)

where Ω = fT is a normalized frequency variable, f is a frequency variable in Hertz,

|x| takes on the absolute value of x, and j =
√−1 is an imaginary number. Fig-

ure 50 shows the normalized frequency responses of the dibit responses for different

ND’s. Apparently, the signal energy becomes more concentrated at low frequencies

as ND increases for both channels. Furthermore, a longitudinal recording channel

exhibits a spectral null at d.c., while a perpendicular recording channel contains a

d.c. component.

5.1.3 Magnetic Recording Channel Model

A magnetic recording system can also be expressed in terms of a mathematical model,

as depicted in Figure 51. This system model will be referred to as a realistic chan-

nel model because it represents all the components that are employed in magnetic

recording read-channel chip architectures.

A binary input data sequence ak ∈ {±1} with bit period T is filtered by an ideal

differentiator 1 − D, where D is the delay operator, to form a transition sequence,

bk ∈ {−2, 0, 2}, where bk = ±2 corresponds to a positive or a negative transition, and

bk = 0 corresponds to the absence of a transition. The transition sequence bk passes

through the channel represented by the transition response g(t) and is corrupted

by the noise v(t). The readback signal, p(t), is filtered by a low-pass filter (LPF)

to eliminate the out-of-band noise and is sampled at the instants controlled by the

timing recovery block. Then, the sampler output is equalized by an equalizer so that

the equalizer output resembles the desired sample. Eventually, the symbol detector

performs ML equalization to determine the most likely input sequence.

94

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

(a) Normalized frequency (fT)

N
or

m
al

iz
ed

 m
ag

ni
tu

de

ND = 2
ND = 2.5
ND = 3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

(b) Normalized frequency (fT)

N
or

m
al

iz
ed

 m
ag

ni
tu

de

ND = 2
ND = 2.5
ND = 3

Figure 50: Frequency responses of the dibit responses for (a) longitudinal and (b)
perpendicular recording.

5.2 Equalization and Target Design

A widely used symbol detector in magnetic recording systems is a Viterbi detector

[24]. Because the complexity of the Viterbi detector grows exponentially with chan-

nel memory, the equalizer is usually employed to shape the overall channel impulse

response into a shorter response called the target response [9, 53], H(D), thus re-

ducing the complexity of the Viterbi detector. The technique of using the equalizer

95

1-D LPF Equalizer

n(t)

ka kb p(t)
g(t)

Symbol
detector

kâ

m(t)

Timing recovery

Target response
H(D)

Figure 51: A realistic magnetic recording channel model.

in conjunction with the Viterbi detector is commonly known as a partial response

maximum-likelihood (PRML) technique [9, 15], which is practically utilized in mag-

netic recording systems. This is done in two steps. First, the received signal is

equalized to a PR target whose response is as close to a channel response as possible.

Then, the Viterbi detector performs ML equalization on the resulting PR trellis.

The generally accepted PR target [81] for longitudinal recording is of the form

H(D) = (1 − D)(1 + D)n [9], whereas the PR target for perpendicular recording

is H(D) = (1 + D)n [39], where n is an integer. Apparently, the term (1 − D) is

not needed for perpendicular recording because the perpendicular recording channel

contains a d.c. component. Figure 52 compares the frequency responses of different

targets. It is clear that as ND increases, a larger value of n is required because the

effect of ISI becomes more severe at high ND. Hence, at high ND, a longer target

allowing more controlled ISI will provide a better match to the channel response than

a shorter target.

By introducing the target response with non-integer valued coefficients, commonly

known as a generalized partial response (GPR) target [53], the performance gain can

be substantially improved, especially at high ND. The choice of the target is crucial

because it governs the noise variance at the input to the Viterbi detector. There

exist many criteria proposed in the literature for designing a suitable target, such as

96

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

(a) Normalized frequency (fT)

N
or

m
al

iz
ed

 m
ag

ni
tu

de

Channel response (ND = 2)
Channel response (ND = 2.5)
PR4 [1 0 −1] (n = 1)
EPR4 [1 1 −1 −1] (n = 2)
EEPR4 [1 2 0 −2 1] (n = 3)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

(b) Normalized frequency (fT)

N
or

m
al

iz
ed

 m
ag

ni
tu

de

Channel response (ND = 2)
Channel response (ND = 2.5)
PR2 [1 2 1] (n = 2)
EPR2 [1 3 3 1] (n = 3)
EEPR2 [1 4 6 4 1] (n = 4)

Figure 52: Frequency responses of different targets for (a) longitudinal and (b)
perpendicular recording channels.

(i) minimizing the noise power at the output of the equalizer [47]; (ii) maximizing

the effective signal-to-noise ratio (SNReff) [23, 53]; (iii) minimizing the mean-squared

error (MSE) between the equalizer output and the desired target output [53]; and

(iv) matching the time or frequency domain of the transition or dibit response of

the channel [59]. Nevertheless, only the minimum mean-squared error (MMSE) ap-

proach [53] is considered in this work because it is more practical to apply in real-life

97

F(D)
(T/N-spaced)

Equalizer

NmTtm /=

ky
NLPF Viterbi

detector

H(D)
(T-spaced)

Target

n(t)

kâmss(t)

kr
kw

1-D g(t) kt∆ka kb
}1{±

p(t)

Figure 53: MMSE target design.

applications.

5.2.1 MMSE Target Design

The MMSE approach yields significantly different results depending on which the spe-

cific constraint is chosen. We concentrate only on the monic constraint [8] because

it yields the best performance among other constraints [53]. Consider the system

model for the target design in Figure 53. The aim of a finite impulse response (FIR)

equalizer, F (D), is to generate the output samples {yk} closely resembling the de-

sired samples {rk} without excessive noise enhancement. This can be achieved by

minimizing the MSE between {yk} and {rk}.
Let H = [h0 h1 · · ·hν]

T represent a (ν + 1)-tap T -spaced target and let F =

[f−K · · · f0 · · · fK]T represent an M -tap T/N -spaced equalizer (M = 2K + 1), where

hk and fk denote the filter coefficients of H(D) and F (D), respectively, N ∈ {1, 2}
is an oversampling rate, and [·]T represents the transpose operation. For simplicity,

we assume that K is divisible by N . Therefore, the target and its corresponding

equalizer are designed by minimizing

E[w2
k] = E[{(sNk ∗ fk) − (ak ∗ hk)}2] (57)

subject to the monic constraint (i.e., h0 = 1), where ∗ denotes the convolution opera-

tor, and E[·] is the expectation operator. In this work, K = 10 is employed with the

98

center tap at k = 0. The minimization process yields [53]

λ =
1

IT(A − PTS−1P)−1I
(58)

H = λ(A − PTS−1P)−1I (59)

F = S−1PH, (60)

where λ is the Lagrange multiplier, I is the (ν +1)-element column vector whose first

element is one and the rest is zero, A, S, and P are (ν + 1)-by-(ν + 1), M -by-M , and

M -by-(ν + 1) matrices with the (i, j)-th element given by

A(i, j) = E

[
L−1∑
k=0

ak−iak−j

]
(61)

S(i, j) = E

[
L−1∑
k=0

sNk+K−isNk+K−j

]
(62)

P(i, j) = E

[
L−1∑
k=0

sNk+K−iak−j

]
, (63)

respectively, and L is the length of the input sequence ak. The resulting target H

is known as the GPR target. Note that the resulting equalizer with N = 1 is called

a T -spaced equalizer, whereas that with N �= 1 is known as a fractionally-spaced

equalizer [63, 82]. As can be seen from the definitions of the matrices, equations (58)

– (60) reduce to their counterparts in [53] when N = 1.

It should be noted that, in some applications, we are provided with a target but are

not given its corresponding equalizer filter. Fortunately, we can still apply the MMSE

approach to design the equalizer. The resulting equalizer F (D) can be obtained by

substituting the given target response H(D) in (60).

5.2.2 Effective SNR

When comparing the performance of different targets, BER is an ultimate indicator

of performance. However, determining BER, especially when BER is less than 10−6,

requires a considerable amount of computation time. Instead, the effective SNR

(SNReff) [6] can be considered as an effective approach to determine which target

99

is the best, because it correlates well with the BER and it can be computed much

faster than BER. To compute SNReff , we need to determine the dominant error event

[12, 24, 50] as well as the autocorrelation matrix of wk, Rww. This can be accomplished

by using only one data sector, as opposed to several data sectors required for the

computation of BER. Note that the larger the sector length, the more reliable the

result.

The SNReff is defined as [6]

SNReff =
(εTε)2

εTRwwε
=

d2
effmin

σ2
w

, (64)

where ε is a column vector of the dominant error event. For example, if the dominant

error event is such that ε(D) = 1 − 2D + 3D2, then ε = [1,−2, 3]T . Let the error

sequence εa(D) = a1(D) − a2(D), where a1(D) and a2(D) are two input sequences

of the same length. The error event is then defined as ε(D) = εa(D)H(D). The

performance of the Viterbi detector is largely determined by the error sequence εa(D)

that results in the error event ε(D) having the smallest effective distance, deffmin,

rather than the Euclidean distance [6]. The error event ε(D) and error sequence

εa(D) having the smallest effective distance is referred to as the dominant error event

and dominant error sequence, respectively.

5.2.3 Numerical Results and Discussion

Consider the system model depicted in Figure 53 with N = 1 and perfect synchroniza-

tion. Because many previous works have been done in the literature for a longitudinal

recording channel [9, 53], we then focus on a perpendicular recording channel, where

its transition response is given in (54). The media jitter noise, ∆tk, is modeled as

a random shift in the transition position with a Gaussian probability distribution

function with zero mean and variance |bk/2|σ2
j (i.e., ∆tk ∼ N (0, |bk/2|σ2

j)) truncated

to T/2, where |x| takes on the absolute value of x, and σj is specified as a percentage

of T .

100

The readback signal, p(t), can be written as

p(t) =
∞∑

k=−∞
bkg(t − kT + ∆tk) + n(t), (65)

where n(t) is additive white Gaussian noise (AWGN) with two-sided power spectral

density N0/2. The readback signal p(t) is filtered by a seventh-order Butterworth

low-pass filter1, whose cutoff frequency is at 1/(2T), and then is sampled at time

tk = kT . The received sequence, sk, is equalized so that the output sequence, yk,

resembles the desired sequence, rk. Eventually, the Viterbi detector performs ML

equalization to determine the most likely input sequence.

We define the electronics SNR (or, simply, SNR) as

SNR = 10 log10

(
V 2

p

σ2
n

)
(dB) (66)

where Vp = g(∞) = 1 is the peak amplitude of an isolated transition pulse and

σ2
n = N0/(2T) is the input AWGN power. Each BER point was computed using as

many 4096-bit data sectors as needed to collect 1000 error bits, while each SNReff

point was computed using only one data sector. For convenience, we denote the

“GPRn” target as the n-tap GPR target with the monic constraint. For each ND,

the SNR used to design the target and its corresponding equalizer was chosen to

minimize the SNR required to achieve the desired BER.

5.2.3.1 BER Performance

Figure 54(a) compares the performance of different targets as a function of NDs in

the absence of media jitter noise (i.e., σj/T = 0%). As illustrated, GPR targets can

outperform PR targets, especially at higher NDs. This is because the GPR target

provides a better match to the channel response than the PR targets. In Figure 54(b),

we pick ND = 2.5, and this time compare the performance of different targets as a

1Since most of the signal energy is confined within |f | ≤ 1/(2T), a low-pass filter also provides
the sufficient statistic [52].

101

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
19

20

21

22

23

24

25

26

(a) Normalized density (ND)

S
N

R
 r

eq
ui

re
d

to
 a

ch
ie

ve
 B

E
R

 =
 1

0−4
 in

 d
B

PR2 [1 2 1]
EPR2 [1 3 3 1]
EEPR2 [1 4 6 4 1]
GPR5

ND 5−tap GPR targets
2 [1 1.14 0.58 0.16 0.03]
2.5 [1 1.34 0.99 0.43 0.09]
3 [1 1.44 1.31 0.74 0.22]

0 1 2 3 4 5 6 7 8
21

22

23

24

25

26

27

28

29

30

S
N

R
 re

qu
ire

d
to

 a
ch

ie
ve

 B
E

R
 =

 1
0−4

 in
 d

B

(b) σ
j
/T (%)

 σ
j
/T (%) 5−tap GPR targets

 0 [1 1.34 0.99 0.43 0.09]
 3 [1 1.33 0.94 0.36 0.06]
 6 [1 1.27 0.72 0.13 −0.03]
 9 [1 1.02 0.15 −0.16 −0.01]

PR2 [1 2 1]
EPR2 [1 3 3 1]
EEPR2 [1 4 6 4 1]
GPR5

Figure 54: (a) Required electronics SNR vs. ND without media jitter noise, and (b)
required electronics SNR vs. σj/T at ND = 2.5.

function of σj/T ’s. Again, it is clear that the GPR target requires a lower SNR to

achieve BER = 10−4 than PR targets for all σj/T ’s. We would like to point out that,

even though the PR2 target (i.e., H(D) = 1 + 2D + D2) requires a lower SNR than

longer PR targets when σj/T is large (which might be because the PR target having a

fewer number of coefficients is less sensitive to the media jitter noise than that having

a larger number of coefficients), this is not the case for the GPR targets because we

102

0 1 2 3 4 5 6 7 8 9
−0.5

−0.25

0

0.25

0.5

0.75

1

Time difference

N
or

m
al

iz
ed

 n
oi

se
 c

or
re

la
tio

n

PR2 [1 2 1]
EPR2 [1 3 3 1]
EEPR2 [1 4 6 4 1]
GPR5 [1 1.34 0.99 0.43 0.09]

Figure 55: Noise correlation of different targets at the input of the Viterbi detector
for ND = 2.5, σj/T = 0%,and SNR = 22 dB.

observed that they still provide a good performance as the target length increases.

Another reason that the GPR target performs better than other targets is because

the GPR target tends to whiten the noise at the input of the Viterbi detector. This

can be verified by plotting the noise correlation of different targets at the input of

the Viterbi detector in Figure 55. Apparently, the GPR5 target seems to whiten the

noise at the input of the Viterbi detector.

5.2.3.2 Error Event Characterization

We also investigate the error events for the perpendicular channel. Table 4 shows the

error sequences and their relative frequency of occurrence for the system operating

at ND = 2.5 and BER = 10−4. Note that “+” represents “2” and “-” denotes “-2”,

and all error sequences have a corresponding symmetrical sequence, i.e., εa = −εa.

For low σj/T cases (0 to 3%), the dominant error sequence for longitudinal record-

ing was shown to be {2, -2, 2} [53], while we found that the dominant error sequence

103

Table 4: Error sequences for different targets and σj/T ’s at ND = 2.5 and BER =
10−4.

Error sequences PR2 GPR5 GPR5 GPR5 GPR5
εa σj/T=0% σj/T=0% σj/T=3% σj/T=6% σj/T=9%

+ 4.90% 3.19% 3.36% 5.84% 41.53%
+- 67.54% 83.25% 79.66% 35.21% 9.62%
+-+ 5.79% 0.35% 1.98% 38.31% 21.53%
+-+- 0.51% 0.58% 1.14% 6.66% 15.73%
+-+-+ 0.13% 0.23% 0.48% 2.66% 6.31%
+-0+- 15.53% 8.75% 8.94% 3.03% 0.00%
+-0+-0+- 1.34% 0.73% 0.84% 0.22% 0.00%
Others 4.26% 2.72% 3.60% 8.06% 5.28%

for perpendicular recording, for all targets, is {2, -2} [39, 40]. Additionally, the num-

ber of dominant error sequences tends to increase as σj/T increases. Performance

can be further improved by designing and utilizing codes that avoid all dominant

error sequences [17]. Another significant point is that because of the different nature

of error events, post-processors that work well with longitudinal recording might not

work as well with perpendicular recording.

It is well-known that if the noise at the input of the Viterbi detector is white,

the performance of the Viterbi detector will then be largely determined by the error

sequence that has the minimum squared Euclidean distance, d2
min, given by [24]

d2
min = min

εa

{d2(εa)}, (67)

where

d2(εa) = εTε. (68)

However, since the noise resulting from designing the GPR target is in general colored

noise, it is better to use the squared effective distance, d2
eff (εa), which is given by

[12]

d2
eff (εa) = σ2

w

(εTε)2

εTRwwε
, (69)

104

Table 5: Error event characterization of the PR2 and GPR5 targets at ND = 2.5
and σj/T = 0%.

Error PR2 [1 2 1] GPR5 [1 1.34 0.99 0.43 0.09]
sequence d2(εa) d2

eff (εa) Percentage of d2(εa) d2
eff (εa) Percentage of

εa occurrence occurrence

+ 24 32.70 4.90% 15.87 16.72 3.19%
+- 16 12.09 67.54% 6.70 6.76 83.25%
+-+ 16 16.21 5.79% 10.77 11.44 0.35%
+-+- 16 18.63 0.51% 10.44 10.62 0.58%
+-+-+ 16 18.00 0.13% 10.82 11.13 0.23%
+-0+- 24 14.06 15.53% 8.25 8.53 8.75%
+-0+-0+- 32 17.09 1.34% 9.80 9.94 0.73%
Others 4.26% 2.72%

to realistically measure the system performance or to characterize the error event. We

verify this statement by characterizing the error event based on the PR2 and GPR5

targets in Table 5 with ND = 2.5 and σj/T = 0%. It is clear that d2
eff (εa) more

accurately predicts which error sequence is most likely to occur in the system than

d2(εa). For example, if we use d2(εa) as a criterion, we cannot determine which error

sequence is most likely to occur because there are several error sequences having the

same d2
min(εa) = 16. Nevertheless, if we use d2

eff (εa) as a criterion, it is apparent that

the error sequence {+ -} is most likely to occur because it has the smallest d2
eff (εa).

The same result is also valid for the GPR5 target.

Therefore, the most likely error sequence is the one that yields the smallest effec-

tive distance, not the smallest Euclidean distance. Furthermore, the error sequence

having the smallest d2
eff (εa) is not necessarily to be the same error sequence that

has the smallest d2(εa). Note that this result is true provided that the system of

interest is evaluated at moderately high SNRs, where there is only one dominating

error event.

105

14 15 16 17 18 19 20 21 22 23
10

−5

10
−4

10
−3

10
−2

10
−1

(a) Electronics SNR (dB)

B
E

R

σ
j
/T = 0%

σ
j
/T = 3%

σ
j
/T = 6%

σ
j
/T = 9%

Q(⋅) with σ
j
/T = 0%

14 15 16 17 18 19 20 21 22 23
9

10

11

12

13

14

15

16

17

18

19

(b) Electronics SNR (dB)

S
N

R
ef

f (
dB

)

σ
j
/T = 0%

σ
j
/T = 3%

σ
j
/T = 6%

σ
j
/T = 9%

Figure 56: (a) BER and (b) SNReff performances of the GPR5 target at ND = 2.5.

5.2.3.3 Effective SNR Performance

We now illustrate the fact that BER and SNReff correlate well, especially when σj/T

is low (this might not be true as σj/T increases because there will be more than one

dominant error sequences, and our SNReff definition does not take this into account).

The BER and SNReff performances of the GPR5 target are compared in Figure 56

at ND = 2.5. Clearly, the SNReff performance coincides with the BER performance.

106

Figure 56(a) also shows that, at low σj/T , SNReff can be used to estimate the BER

according to BER ≈ AQ(1
2

√
SNReff) [53], where A is a constant independent of σ2

w,

and Q(x) = 1
2π

∫∞
x e−t2/2dt is the tail integral of the Gaussian density function [42].

For instance, at σj/T = 0%, the estimated BER labeled as “Q(·)” is in agreement

with the actual BER obtained from simulation when A = 2.3.

In Figure 57(a), the BER versus SNReff plot illustrates that, if SNReff is the

same regardless of which target it corresponds to, the BER will be approximately the

same, especially at low σj/T cases. As a result, SNReff can be used instead of BER

as a criterion to compare the performance of different targets for a given input SNR.

However, keep in mind that to achieve the same BER or SNReff , different targets may

require different amounts of input SNR, as illustrated in Figure 57(b).

5.2.4 Summary

Research on perpendicular recording has been of increasing interest because of the

potential for increased storage capacity as compared to longitudinal recording. Even

though the same PRML detection process used in longitudinal recording can still

be used for perpendicular recording, the target must be specifically designed for the

perpendicular channel to obtain optimal performance.

A substantial performance improvement can be obtained by using the GPR target

instead of the PR target, especially at high ND. At high ND, a longer target will

provide a better match to the channel response than a shorter one because the effect

of ISI becomes more severe at high ND. Irrespective of any media jitter noise level, the

GPR target yields a better performance than the PR target. This is because the GPR

target tends to whiten the noise at the input of the Viterbi detector. Because the

GPR target is primarily a function of ND, SNR, and the media jitter noise amount,

one needs to carefully design the GPR target for a given system condition so as to

obtain a good performance.

107

8 10 12 14 16 18 20
10

−5

10
−4

10
−3

10
−2

10
−1

(a) Effective SNR (dB)

B
E

R

PR2 [1 2 1], σ
j
/T = 0%

GPR5, σ
j
/T = 0%

GPR5, σ
j
/T = 3%

GPR5, σ
j
/T = 6%

14 15 16 17 18 19 20 21 22 23
10

−5

10
−4

10
−3

10
−2

10
−1

(b) Electronics SNR (dB)

B
E

R

PR2 [1 2 1], σ
j
/T = 0%

GPR5, σ
j
/T = 0%

GPR5, σ
j
/T = 3%

GPR5, σ
j
/T = 6%

Figure 57: (a) BER vs. SNReff and (b) BER vs. Electronics SNR of different targets
with various σj/T ’s at ND = 2.5.

We also showed that when σj/T is low, the effective distance compared with the

Euclidean distance more accurately predicts which error sequence is most likely to

occur in a system. Therefore, the performance of the Viterbi detector at high SNR

can be determined by the error sequence that has the smallest effective distance.

In addition, the resulting dominant error sequence is the same for all targets and

different from longitudinal recording. Designing and using codes that avoid this error

108

sequence will further improve the system performance. Finally, we have demonstrated

that SNReff can be equivalently used instead of BER to measure the performance of

different targets.

5.3 Timing Recovery for Fast Convergence

In practice, it is desirable for timing recovery to achieve synchronization as fast as

possible. This means that all the initial phase and frequency offsets in a system

during acquisition, and any phase and frequency changes during tracking should be

recovered very quickly (i.e., within a fewer number of samples).

Today’s magnetic recording read-channel chip architectures employ symbol-rate

sampling and conventional timing recovery to reduce the system cost. In this config-

uration, which will be referred to as a conventional receiver, a T -spaced equalizer is

used to shape the overall channel impulse response to the target response before per-

forming ML equalization. However, we have shown in Section 2.4 that conventional

timing recovery does not perform well if we want to recover all the sampling phase

and frequency information very quickly, e.g., within 100 or 50 samples.

To improve the performance of conventional timing recovery, we exploit the idea of

oversampling the received analog signal by twice the symbol rate to get more timing

information. Because the oversampled system requires a fractionally-spaced equalizer

instead of a T -spaced equalizer, it will also get all the benefits from a fractionally-

spaced equalizer [63, 82]. For example, it is insensitive to a constant timing offset

[63] in the system, as opposed to a T -spaced equalizer. With this idea, we propose

the oversampled PSP-based timing recovery scheme [37] to achieve a fast convergence

rate in the application of magnetic recording channels. Four system configurations

are investigated and compared in this section, as shown in Figure 58.

109

System

Symbol-rate system
Sampling rate: i

Equalizer: T-spaced equalizer
TED: M&M

Conventional
timing recovery

Oversampled system
Sampling rate: 1

Equalizer: T/2-spaced equalizer
TED: Early-late

Oversampled
timing recovery

PSP-based
timing recovery

Oversampled PSP-based
timing recovery

TTs = 2/TTs =

Figure 58: Diagram of different timing recovery schemes.

1-D g(t) kt∆ LPF F(D) N
Viterbi
detector

Equalizer

n(t)

ka kb
kâ

ksm mTt τ̂+=

mss(t) ky

Symbol
detector

TED
Loop
Filter

VCO

kr̂

kε̂

kτ

NTTs =

mxp(t)

(Symbol-rate/Oversampled)
PSP-based timing recovery

kâ

Figure 59: Magnetic recording channel model.

5.3.1 System Description

Consider the magnetic recording channel model shown in Figure 59, where the read-

back signal can be written as [37, 38]

p(t) =
∞∑

k=−∞
ak{g(t − kT − ∆tk − τk) − g(t − (k + 1)T − ∆tk+1 − τk)} + n(t). (70)

The readback signal p(t) is filtered by a seventh-order Butterworth low-pass filter,

whose cutoff frequency is at N/(2T), and is sampled at tm = mTs+τ̂k where Ts = T/N

is the sampling period, N ∈ {1, 2} is an oversampling ratio, and τ̂k is the timing

estimate of τk at time k (k = �m/N� where �·� takes on the smallest integer value).

110

The T/N -spaced received sequence, sm, is equalized by a T/N -spaced equalizer,

F (D), and then is downsampled to obtain a T -spaced sequence, yk, (i.e., yk = xNk)

closely resembling a desired sequence, rk. Then, TED utilizes xm and r̂k to generate

the estimated timing error ε̂k. The symbol-rate system (i.e., N = 1) uses the M&M

TED [54] given in (4), i.e.,

ε̂k = x(kT + τ̂k)r̂k−1 − x((k − 1)T + τ̂k−1)r̂k. (71)

Note that the constant KT (as used in (4) to ensure that the S-curve slope of (71) is

unity at the origin) will be included in the PLL gain parameters. For the oversampled

system (i.e., N = 2) case, we consider the early-late TED [45], which is expressed as

ε̂k = r̂k

{
x(kT +

T

2
+ τ̂k) − x(kT − T

2
+ τ̂k−1)

}
. (72)

Then, the timing estimate is updated by a second-order PLL according to (5) – (6).

Note that the symbol detector used in the timing loop is the Viterbi detector with a

decision delay of 4T .

5.3.2 Incorporating the Equalizer in PSP-Based Timing Recovery

To incorporate the equalizer in PSP-based timing recovery, let s
(p,q)k
i denote the sam-

pler output at the sampling time index, i, associated with the survivor path leading

to the state transition (p, q) at time k (or at the k-th stage). For example, as shown in

Figure 14 with N = 1, s
(1,2)k

k = s(kT + τ̂k(1)). Similarly, s
(1,2)k

k−1 = s((k−1)T + τ̂k−1(0)).

Let an M -tap T/N -spaced equalizer take the form F (D) =
∑K

i=−K fiD
i. Then, the

equalizer output at symbol interval associated with (p, q) at time k can be expressed

as

x(p,q)k
m =

K∑
i=−K

fis
(p,q)k

m−K−i (73)

Note that yk(p) = x
(p,q)k

Nk and yk+ K
N

will correspond to ak. Once the equalizer output is

determined, the process of the timing update operation in PSP-based timing recovery

is the same as explained in Section 3.3.

111

(C-1) Initialize Φ0(p) = 0 for ∀p

*(C-2) Initialize τ̂k(p) = 0 and θ̂k(p) = 0 for k < K/N and ∀p

(C-3) For k = 0, 1, . . . , L + ν − 1 + (K/N)

(C-4) For q = 0, 1, . . . , Q − 1

*(C-5) s
(p,q)k

Nk+j = s((Nk + j)Ts + τ̂k(p)) for j = 0, . . . , N − 1 and ∀p

(C-6) x
(p,q)k

Nk+j =
∑K

i=−K fis
(p,q)k

(Nk+j)−K−i for j = 0, . . . , N − 1 and ∀p

(C-7) yk(p) = x
(p,q)k

Nk for ∀p

(C-8) ρk(p, q) = |yk(p) − r̂(p, q)|2 for ∀p

(C-9) πk+1(q) = arg minp{Φk(p) + ρk(p, q)}
(C-10) Φk+1(q) = Φk(πk+1(q)) + ρk(πk+1(q), q)

(C-11) Sk+1(q) = [Sk(q) |πk+1(q)]

*(C-12) If N = 1 [M&M TED],

ε̂ = yk(πk+1(q))r̂(πk(πk+1(q)), πk+1(q)) − yk−1(πk(πk+1(q)))r̂(πk+1(q), q)

If N = 2 [Early-late TED],

ε̂ = r̂(πk+1(q), q)
{
x

(πk+1(q),q)k

Nk+1 − x
(πk+1(q),q)k

Nk−1

}
*(C-13) θ̂k+1(q) = θ̂k(πk+1(q)) + κε̂

*(C-14) τ̂k+1(q) = τ̂k(πk+1(q)) + ξε̂ + θ̂k+1(q)

(C-15) End

(C-16) End

(C-17) Extract â from the survivor path that minimizes ΦL+ν

Figure 60: PSP-based timing recovery algorithm with a T/N -spaced equalizer,
where the lines beginning with * are the additional steps beyond the conventional
receiver.

Figure 60 illustrates the algorithm for PSP-based timing recovery for N ∈ {1, 2},
where the lines beginning with * are the additional steps beyond the conventional

receiver. Note that an amount of K/N will represent the delay in bit period. For

simplicity, we assume that K is divisible by N . It should be pointed out that only

τ̂i and âi for i = (K/N), (K/N) + 1, · · · , L− 1 + (K/N) will correspond to the input

sequence ak because of the delay introduced by a T/N -spaced equalizer.

112

Table 6: 5-tap GPR targets for different systems.

Channels and systems 5-tap GPR target H(D)

Longitudinal Symbol-rate [1 0.613 -0.478 -0.626 -0.291]
Oversampled [1 0.419 -0.441 -0.544 -0.268]

Perpendicular Symbol-rate [1 1.429 1.097 0.465 0.099]
Oversampled [1 1.421 1.076 0.451 0.097]

5.3.3 Numerical Results and Discussion

We consider ND = 2.5 for both longitudinal and perpendicular recording channels

with σj/T = 3% media jitter noise, σw/T = 0.5% clock jitter noise, and 0.4% fre-

quency offset. The 5-tap GPR target and a 21-tap equalizer were designed at the

SNR required to achieve BER = 10−5. Table 6 shows the 5-tap GPR targets designed

for different system conditions.

A linearized model of second-order PLL [9] (as described in Section 2.3.2) is used

to design ξ and κ, assuming that there is no noise in the system and the S-curve

slope [9] is unity at the origin. The PLL gain parameters were designed to recover

phase and frequency changes in C bit periods (the smaller the C, the faster the

convergence rate) as presented in Section 2.3. Note that the PLL gain parameters

strongly depend on the chosen target, the total delay (denoted as dT) in the timing

loop, a given C, and a TED algorithm. Here, we consider the case where the same

PLL gain parameters are used during both acquisition and tracking modes.

Four timing recovery schemes shown in Figure 58 are compared. Note that each

scheme experiences different loop delays. Obviously, the total loop delays of con-

ventional, oversampled, PSP-based, and oversampled PSP-based timing recovery are

14T , 9T , 10T , and 5T , respectively (as a T -spaced equalizer, a T/2-spaced equalizer,

and a symbol detector introduce delays of 10T , 5T , and 4T , respectively). Finally,

each BER point was computed using as many data packets as needed to collect at

least 1000 error bits. One data packet consists of a C-bit preamble (4T pattern) and

113

Table 7: PLL gain parameters for longitudinal recording for the 5-tap GPR target.

Convergence Timing recovery schemes
rate Conventional PSP-based Oversampled Oversampled PSP-based

(in bit periods) d = 14 d = 10 d = 9 d = 5

C = 256 ξ 0.0027 0.0028 0.0043 0.0045
κ 3.11e-5 3.24e-5 5.22e-5 5.44e-5

C = 100 ξ 0.0057 0.0062 0.0098 0.0107
κ 1.43e-4 1.63e-4 2.65e-4 3.09e-4

C = 50 ξ 0.0087 0.0098 0.0158 0.0189
κ 3.91e-4 4.74e-4 7.71e-4 9.88e-4

a 4096-bit input data sequence.

5.3.3.1 Longitudinal Recording

The PLL gain parameters for different timing recovery schemes are shown in Table 7.

Figure 61 shows the BER performance of different schemes using ξ and κ designed

for C = 256. With perfect timing, the oversampled system itself offers a large perfor-

mance gain over the symbol-rate system. This suggests that the oversampled system

should be employed in a longitudinal recording channel.

As depicted in Figure 61, for a given architecture (PSP-based or conventional),

the oversampled system outperforms the symbol-rate system in all cases. However,

for a given system (oversampled or symbol-rate), PSP-based timing recovery performs

just slightly better than the conventional one. This is because they operate at the

optimal point, where ξ and κ were designed to minimize the steady-state error in

the timing loop (based on a linearized model), regardless of the convergence rate.

The ξ and κ designed for C = 256 can be given as an example. Nevertheless, the

performance gain becomes high when employing ξ and κ designed for small C (i.e.,

when operating in a system that requires fast convergence), as illustrated in Figure 62.

Clearly, oversampled PSP-based timing recovery yields the best performance among

other timing recovery schemes in all cases. This can be implied that oversampled

114

12 12.5 13 13.5 14 14.5 15 15.5 16

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
E

R

Conventional (N=1)
Oversampled (N=2)
PSP−based (N=1)
Oversampled PSP−based (N=2)
Perfect timing (N=1)
Perfect timing (N=2)

Figure 61: BER performance of different timing recovery schemes for longitudinal
recording using ξ and κ designed for C=256.

Table 8: PLL gain parameters for perpendicular recording for the 5-tap GPR target.

Convergence Timing recovery schemes
rate Conventional PSP-based Oversampled Oversampled PSP-based

(in bit periods) d = 14 d = 10 d = 9 d = 5

C = 100 ξ 0.0070 0.0076 0.0129 0.0140
κ 1.76e-4 2.02e-4 3.48e-4 4.06e-4

C = 50 ξ 0.0107 0.0121 0.0207 0.0248
κ 4.83e-4 5.86e-4 1.01e-3 1.30e-3

PSP-based timing recovery can achieve faster convergence than any other scheme.

5.3.3.2 Perpendicular Recording

The PLL gain parameters for different timing recovery schemes are shown in Table 8.

Unlike longitudinal recording, we observed that there is no significant performance

gain between the oversampled system and the symbol-rate system in perpendicular

recording when operating a system using ξ and κ designed for C = 256. However,

a relatively large gain can be obtained between the oversampled system and the

115

12 12.5 13 13.5 14 14.5 15 15.5 16
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

(a) SNR (dB)

Conventional (N=1)
Oversampled (N=2)
PSP−based (N=1)
Oversampled PSP−based (N=2)
Perfect timing (N=1)
Perfect timing (N=2)

12 12.5 13 13.5 14 14.5 15 15.5 16
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

(b) SNR (dB)

B
E

R

Conventional (N=1)
Oversampled (N=2)
PSP−based (N=1)
Oversampled PSP−based (N=2)
Perfect timing (N=1)
Perfect timing (N=2)

Figure 62: BER performance of different timing recovery schemes for longitudinal
recording using ξ and κ designed for (a) C = 100 and (b) C = 50.

symbol-rate system, and between the PSP-based timing recovery architecture and

the conventional timing recovery architecture when employing ξ and κ designed for

C = 100 and C = 50, as depicted in Figure 63. Again, the oversampled PSP-based

timing recovery scheme performs better than other schemes in all cases.

116

19 19.5 20 20.5 21 21.5 22 22.5 23
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

(a) SNR (dB)

B
E

R

Conventional (N=1)
Oversampled (N=2)
PSP−based (N=1)
Oversampled PSP−based (N=2)
Perfect timing (N=1)
Perfect timing (N=2)

19 19.5 20 20.5 21 21.5 22 22.5 23
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

(b) SNR (dB)

Conventional (N=1)
Oversampled (N=2)
PSP−based (N=1)
Oversampled PSP−based (N=2)
Perfect timing (N=1)
Perfect timing (N=2)

Figure 63: BER performance of different timing recovery schemes for perpendicular
recording using ξ and κ designed for (a) C = 100 and (b) C = 50.

5.3.4 Summary

We investigated the idea of oversampling the received analog signal by twice the

symbol rate to get more timing information in both longitudinal and perpendicular

recording channels. With the oversampled method, we proposed the oversampled

PSP-based timing recovery scheme to achieve fast convergence. Simulation results

indicated that the oversampled PSP-based timing recovery scheme performs better

117

than other schemes, especially when operating in a system that requires fast conver-

gence (i.e., when using the PLL gain parameters designed for small C).

Although the oversampled system provides a better performance than the symbol-

rate system in magnetic recording channels, one still needs to consider the implemen-

tation cost. For example, an analog-to-digital converter (i.e., a sampler) operating at

twice symbol-rate sampling is very costly because of a very high data rate used in a

hard disk drive. In addition, the complexity of PSP-based timing recovery is higher

than conventional timing recovery. Therefore, all advantages gained by the over-

sampled PSP-based timing recovery scheme need to be balanced against increased

implementation costs.

5.4 Iterative Timing Recovery

A large coding gain of iterative ECCs allows reliable operation at SNR lower than

ever before. In magnetic recording systems, lower SNR not only reduces the cost of

operation but also allows for higher storage capacity. In this section, we will investi-

gate the performance of per-survivor iterative timing recovery in magnetic recording

channels operating at low SNR. This experiment will help determine whether or not it

is feasible to use this scheme in real-life applications, if compared to the conventional

schemes used in today’s magnetic recording read-channel chip architectures.

5.4.1 System Description

Consider a coded magnetic recording channel shown in Figure 64, where g(t) is the

transition response given in (53) for longitudinal recording and in (54) for perpendic-

ular recording. The training bits will be “inserted” in a sequence bk before passing it

through the channel. At the receiver, after performing timing recovery, the training

bits will be “discarded” at the equalizer output before feeding the resulting sequence

into the turbo equalizer. We also assume that there is no frequency offset left in the

system after the first iteration. This means that, when using the NBM scheme and

118

n(t)

ka
kτSISO

encoder π 21

1

D⊕
kx p(t)

LPF
s(t)

PLL

kkT τ̂+

π

1−π

kλ

kx̂p(t) ky

1-D g(t) kt∆

SISO
equalizer

F(D)ks

(a) Data encoding with a magnetic recording channel

(b) Conventional receiver

kb

SISO
decoder

Figure 64: A magnetic recording channel model with a conventional receiver.

per-survivor iterative timing recovery, a first-order PLL will be employed to refine

the samples after the first iteration.

5.4.2 Numerical Results and Discussion

We consider ND = 2 for both longitudinal and perpendicular recording channels with

σj/T = 3% media jitter noise, σw/T = 0.5% clock jitter noise, and 0.4% frequency

offset. The 3-tap GPR target and a 21-tap equalizer were designed at the SNR

required to achieve BER = 10−5. Again, the PLL gain parameters were designed for

C = 256 based on a linearized model of PLL. Here, we again consider the case where

the same PLL gain parameters are employed during both acquisition and tracking

modes.

5.4.2.1 BER Performance

For longitudinal recording, the 3-tap GPR target is H(D) = 1 + 0.098D − 0.702D2.

The PLL gain parameters, which already includes a constant KT as introduced in (4),

for this channel are given in Table 9. Figure 65(a) compares the BER performance

of different iterative timing recovery schemes. It is clear that per-survivor iterative

119

Table 9: PLL gain parameters for the 3-tap GPR target for different system condi-
tions.

Receiver architectures
Channels Conventional receiver Per-survivor iterative

& NBM scheme timing recovery

Longitudinal ξ 0.00254 0.00263
κ 2.93e-5 3.06e-5

Perpendicular ξ 0.00398 0.00413
κ 4.60e-5 4.81e-5

timing recovery outperforms the conventional receiver. Also, it performs better than

the NBM scheme, especially at high SNR. Specifically, it can provide more than a 2

dB gain over the NBM scheme with 10 iterations at BER = 10−4. Note that there is

a big performance gap between per-survivor iterative timing recovery and the system

with perfect timing, especially at high SNR. This might be because timing recovery

suffers from a frequency offset component present in the system.

Similarly, for perpendicular recording, the 3-tap GPR target is H(D) = 1 +

1.148D + 0.475D2. The PLL gain parameters for this channel are also given in Table

9. Figure 65(b) compares the BER performance of different schemes. Again, per-

survivor iterative timing recovery performs better than the conventional receiver and

the NBM scheme, especially at high SNR. Specifically, it can provide almost a 1 dB

gain over the NBM scheme with 10 iterations at BER = 10−4.

5.4.2.2 Complexity Versus Performance

It is worth comparing the performance of different iterative timing recovery schemes

when they approximately have the same complexity (i.e., the same number of oper-

ations), as discussed in Section 4.6.1. With an equalizer in a system and the infor-

mation given in Tables 1 and 2 (in Section 4.5.3), we can count the total number of

operations of each scheme, including the SISO decoder, as illustrated in Table 10,

120

10.5 11 11.5 12 12.5 13
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

(a) SNR (dB)

B
E

R

Perfect timing

Per−survivor iterative
timing recovery (10, 30)

NBM scheme (10, 30)

Conventional receiver (1, 30)

14 14.25 14.5 14.75 15 15.25 15.5 15.75 16
10

−5

10
−4

10
−3

10
−2

10
−1

(b) SNR (dB)

B
E

R

NBM scheme
(10, 30)

Conventional receiver (1, 30)

Per−survivor iterative
timing recovery (10, 30)

Perfect timing

Figure 65: BER performance of different iterative timing recovery schemes for (a)
longitudinal recording and (b) perpendicular recording at ND = 2, σw/T = 0.5%,
σj/T = 3%, and 0.4% frequency offset.

where N is the number of iterations. Note that equalization using an Neq-tap equal-

izer requires Neq − 1 additions and Neq multiplications (where Neq = 21 is used in

this work), and per-survivor iterative timing recovery performs equalization at each

trellis state during forward and backward recursions.

121

Table 10: The total number of operations of each iterative timing recovery scheme
used in magnetic recording systems.

Schemes Number of operations (per bit)
Addition Multiplication Total

Conventional receiver 106 + 330N 48 + 595N 154 + 925N
NBM scheme 436N 643N 1079N
Per-survivor iterative 1170N 955N 2125N
Perfect timing 103 + 330N 42 + 595N 145 + 925N

Again, we consider the total number of operations when comparing the perfor-

mance of iterative timing recovery schemes. We first assume that the current technol-

ogy can support the total number of operations equal to 4 iterations of per-survivor

iterative timing recovery. Then, as given in Table 10, it can be shown that per-survivor

iterative timing recovery with 4 iterations has the total number of operations approx-

imately equal to the conventional receiver with 10 iterations, the NBM scheme with

8 iterations, and the system with perfect timing with 10 iterations.

Figure 66 compares the performance of different iterative timing recovery schemes

when they approximately have the same complexity. For longitudinal recording, it

is evident that per-survivor iterative timing recovery performs much better than the

conventional receiver and the NBM scheme, especially at high SNR. For perpendicu-

lar recording, although per-survivor iterative timing recovery performs slightly worse

than the NBM scheme at low SNR, it outperforms the NBM scheme at high SNR.

This implies that, when SNR is high enough, per-survivor iterative timing recovery

can perform quite well even with a fewer iterations. Therefore, at low to moder-

ate complexity, per-survivor iterative timing recovery still performs better than the

conventional schemes, especially at high SNR. This is because per-survivor iterative

timing recovery can correct a cycle slip much more efficiently than other schemes,

especially at high SNR.

Finally, it is also worth comparing the performance of iterative timing recovery

122

10.5 11 11.5 12 12.5 13

10
−5

10
−4

10
−3

10
−2

10
−1

(a) SNR (dB)

B
E

R

Conventional receiver (10)

NBM scheme (8)

Perfect timing (10)

Per−survivor iterative
timing recovery (4)

14 14.5 15 15.5 16
10

−5

10
−4

10
−3

10
−2

10
−1

(b) SNR (dB)

B
E

R

Conventional receiver (10)

NBM scheme (8)

Per−survivor iterative
timing recovery (4)

Perfect timing (10)

Figure 66: BER performance of different iterative timing recovery schemes with
the same complexity for (a) longitudinal recording and (b) perpendicular recording
channels at ND = 2 with σw/T = 0.5%, σj/T = 0.3%, and 0.4% frequency offset.

schemes when they approximately have the same complexity at different NDs. This

experiment will tell us how much ND improvement we can obtain when all schemes

have the same complexity. In this experiment, the 3-tap GPR target is used for all

NDs. The target and its corresponding equalizer were designed at the SNR required

to achieve BER = 10−5 for each ND. Figure 67 plots the SNR required to achieve

123

1.5 1.7 1.9 2.1 2.3 2.5
10

11

12

13

14

15

16

17

(a) Normalized recording density (ND)

S
N

R
 r

eq
ui

re
d

to
 a

ch
ei

ev
e

B
E

R
 =

 1
0 −

4 (
in

 d
B

)

Conventional receiver (10)

Per−survivor iterative
timing recovery (4)

Perfect timing (10)

NBM scheme (8)

1.5 1.7 1.9 2.1 2.3 2.5
12

13

14

15

16

17

18

19

20

(b) Normalized recording density (ND)

S
N

R
 r

eq
ui

re
d

to
 a

ch
ei

ev
e

B
E

R
 =

 1
0 −

4 (
in

 d
B

)

Conventional receiver (10)

NBM scheme (8)

Per−survivor iterative
timing recovery (4)

Perfect timing (10)

Figure 67: SNR required to achieve BER = 10−4 (in dB) versus ND of different iter-
ative timing recovery schemes with the same complexity for (a) longitudinal recording
and (b) perpendicular recording channels with σw/T = 0.5%, σj/T = 0.3%, and 0.4%
frequency offset.

BER = 10−4 as a function of NDs. It is apparent that, for longitudinal recording,

a large ND improvement gain can be obtained from per-survivor iterative timing

recovery if compared to the conventional receiver and the NBM scheme. Nevertheless,

only a small ND improvement gain is obtained from per-survivor iterative timing

124

recovery when operating in perpendicular recording channels. This suggests that per-

survivor iterative timing recovery is of more worth when it is employed in longitudinal

recording channels than in perpendicular recording channels.

5.4.3 Summary

We investigated the performance of different iterative timing recovery schemes in mag-

netic recording channels (both longitudinal and perpendicular recording) operating at

low SNR. It has been shown that per-survivor iterative timing recovery performs bet-

ter than conventional schemes when operating in a moderate system condition (e.g.,

with ND = 2, σw/T = 0.5% clock jitter noise, σj/T = 3% media jitter noise, and

0.4% frequency offset). Additionally, we have shown that per-survivor iterative timing

recovery can also achieve higher NDs than other iterative timing recovery schemes,

especially in longitudinal recording channels. Therefore, per-survivor iterative timing

recovery is worth being employed in magnetic recording systems.

125

CHAPTER 6

CONCLUSION

Timing recovery is the process of synchronizing the sampler with the received analog

signal. Sampling at the wrong times can have a devastating impact on overall per-

formance. Improving the performance of timing recovery will give rise to improved

reliability of an entire system. In this work, we developed and investigated new tim-

ing recovery schemes that perform better than conventional ones for the systems with

and without ECCs.

6.1 Summary

In Chapter 2, a brief overview of conventional timing recovery that is based on a PLL

was given. A method of designing the PLL gain parameters based on a linearized

model of PLL was introduced. We have shown that for low to moderate SNRs,

conventional timing recovery does not perform well, especially when the timing error

is large or when operating in a system that requires fast convergence.

Chapter 3 dealt with the problem of timing recovery in the absence of ECCs

(i.e., in uncoded systems). We proposed a PSP-based timing recovery scheme to

jointly perform timing recovery and equalization. It has been shown that PSP-based

timing recovery performs better than conventional timing recovery, especially when

the timing jitter is severe, and also achieves faster convergence than conventional

timing recovery. We also investigated different approaches to reduce the complexity

of PSP-based timing recovery. We found that the M- and T- algorithms can be used

to reduce the complexity of PSP-based timing recovery with acceptable performance

if their parameters are chosen suitably.

126

Chapter 4 dealt with the problem of timing recovery in the presence of ECCs (i.e.,

in coded systems). We proposed a per-survivor iterative timing recovery scheme to

jointly perform timing recovery, equalization, and error-correction decoding. It has

been shown that per-survivor iterative timing recovery outperforms other iterative

timing recovery schemes, especially when the timing error is large. This is because

per-survivor iterative timing recovery can automatically correct a cycle slip much more

efficiently than the others. A reduced-complexity version of per-survivor iterative

timing recovery is also investigated. Again, we found that the M- and T- algorithms

can be used to reduce the complexity of per-survivor iterative timing recovery with

acceptable performance if their parameters are suitably chosen. Furthermore, we also

proposed to use the EXIT chart as a tool to compare and predict the performance

of iterative timing recovery schemes. We have showed that the EXIT chart can be

equivalently used instead of BER as a measure to compare the performance of different

iterative timing recovery schemes, assuming that there is no cycle slip. Specifically,

the system performance predicted by the EXIT chart coincides with that obtained

by simulating data transmission over the complete iterative receiver, especially when

the coded block length is large.

In Chapter 5, we first proposed the suitable GPR targets for a perpendicular

recording channel and found that the dominant error sequence for this channel is

{+2,-2}, as opposed to {+2,-2, +2} for a longitudinal recording channel. Then, we

demonstrated that the effective SNR can be equivalently used instead of BER to

measure the performance of different targets, considering that the BER computation

takes a considerable amount of simulation time. We also investigated the idea of over-

sampling the received analog signal by twice the symbol rate to get more timing infor-

mation in magnetic recording channels. With this idea, we proposed the oversampled

PSP-based timing recovery scheme to achieve fast convergence for magnetic recording

channels (both longitudinal and perpendicular recording). It has been shown that the

127

oversampled PSP-based timing recovery scheme performs better than other schemes,

especially when operating in a system that requires fast convergence. Finally, we in-

vestigated the performance of iterative timing recovery schemes in magnetic recording

channels operating at low SNR. Simulation results have shown that per-survivor it-

erative timing recovery performs better and achieves higher ND than other iterative

timing recovery schemes. Therefore, per-survivor iterative timing recovery is worth

being employed in magnetic recording systems, if compared to conventional schemes

used in today’s magnetic recording read-channel chip architectures.

6.2 Future Work

In this work, we proposed new timing recovery schemes for the systems with and

without ECCs. It has been shown that the performance of the proposed schemes is

quite promising if compared to conventional schemes. Nonetheless, most results are

based on simulations. To fully understand their architectures, additional analytical

expressions (e.g., a lower bound, a predicted BER, etc.) would be of great interest.

Performance analysis of iterative timing recovery schemes is difficult to determine

because of their complexity. Although we proposed to use the EXIT chart as a

tool to compare and predict their performances, this method is still based mostly on

simulations. Therefore, it would be beneficial to have a purely theoretical tool for

measuring and predicting their performance.

Only the T- and M- algorithms are considered in this work as a means to reduce

the complexity of the proposed timing recovery schemes. It would also be interesting

to investigate other possibilities to reduce their complexity with acceptable perfor-

mance. For example, we could incorporate the constraint codes, e.g., run-length

limited (RLL) codes [32], in the system. The advantage of this technique is not

only to reduce the number of branches in the trellis but also help facilitate timing

recovery. However, it has a drawback of lowering the code rate. A fair performance

128

comparison of this approach against the system without a constraint code would be

of interest. Additionally, many works have proposed to use a soft-output Viterbi

algorithm (SOVA) [28] in iterative detection [28, 29]. Therefore, it might be a good

idea to embed the timing recovery step inside SOVA based on PSP so as to perform

timing recovery and equalization jointly, for which we will denote this technique as

“PSP-SOVA.” We can then use PSP-SOVA in place of PSP-BCJR to reduce the

complexity of per-survivor iterative timing recovery. The performance comparison

of per-survivor iterative timing recovery using PSP-BCJR and PSP-SOVA, for given

complexity, would be interesting.

Finally, in magnetic recording channels, the noise seen at the equalizer output is

normally colored noise, especially at high normalized recording densities. To cope

with the colored noise, the technique known as noise-predictive maximum-likelihood

(NPML) [20, 62] has been introduced. It would be of interest to incorporate this tech-

nique in PSP-based timing recovery and per-survivor iterative timing recovery and

then investigate their performance. We expect a large performance improvement by

using this technique, especially at high normalized recording densities. Furthermore,

the noise in magnetic recording channels also possesses another unique feature, which

is data dependent [51]. Media jitter noise can be given as an example of this type of

noise. This media jitter noise depends on the data pattern written on the disk and can

contribute a significant portion of the total noise. The so-called pattern-dependent

noise-predictive (PDNP) technique [51] has been proposed to combat the pattern

dependence of media noise. Therefore, it would also be interesting to incorporate

the PDNP technique in PSP-based timing recovery and per-survivor iterative timing

recovery and investigate their performance. We again expect a large performance

improvement by using this technique, especially when operating in a channel at high

normalized recording densities or at high media jitter noise levels.

129

APPENDIX A

DERIVATION OF THE STARTING STATE

ASSOCIATED WITH THE BEST STATE

TRANSITION

This appendix explains how to derive the expression given in (B-8) that is used to

choose the best (forward) state transition for PSP-BCJR. Following the notations in

[5], [8], the starting state associated with the best state transition leading to state q

at time k + 1 is chosen according to

p̂ = arg max
p

{Pr[Ψk = p, Ψk+1 = q|yk,yl<k]} , (74)

where Ψk is the trellis state at time k, yk is the k-th channel observation, and yl<k a

collection of {yl} for l < k.

Using Bayes’ rule, the probability in (74) can be rewritten as

Pr[Ψk = p, Ψk+1 = q|yk,yl<k] =
Pr[Ψk = p, Ψk+1 = q, yk,yl<k]

Pr[yk,yl<k]

=
Pr[Ψk+1 = q, yk|Ψk = p,yl<k] · Pr[Ψk = p,yl<k]

Pr[yk,yl<k]

=
γk(p, q) · αk(p)∑

u αk+1(u)
, (75)

where

Pr[Ψk+1 = q, yk|Ψk = p,yl<k] = Pr[Ψk+1 = q, yk|Ψk = p]

= γk(p, q)

Pr[Ψk = p,yl<k] = αk(p)

Pr[yk,yl<k] =
∑
u

Pr[yl<k+1, Ψk+1 = u]

130

=
∑
u

αk+1(u).

Substituting (75) in (74), one obtains

p̂ = arg max
p

{γk(p, q) · αk(p)} (76)

by ignoring the term irrelevant to maximization.

131

APPENDIX B

DERIVATION OF THE STARTING STATE

ASSOCIATED WITH THE BEST BACKWARD

STATE TRANSITION

In this appendix, we derive the expression given in (B-21) that is used to select the best

backward state transition in PSP-BCJR, which can be explained as follows. Following

the notations in [5], [8], the starting state associated with the best backward state

transition leading to state p at time k is chosen according to

q̂ = arg max
q

{Pr[Ψk = p, Ψk+1 = q|yk,yl>k]} , (77)

where yl>k a collection of {yl} for l > k.

Using Bayes’ rule, the probability in (77) can be rewritten as

Pr[Ψk = p, Ψk+1 = q|yk,yl>k] =
Pr[Ψk = p, Ψk+1 = q, yk,yl>k]

Pr[yk,yl>k]

=
Pr[Ψk = p, yk|Ψk+1 = q,yl>k] · Pr[Ψk+1 = q,yl>k]

Pr[yk,yl>k]

=
γk(p, q) · βk+1(q) · Pr[Ψk = p]∑

u βk(u)Pr[Ψk = u]
, (78)

where

Pr[Ψk = p, yk|Ψk+1 = q,yl>k] = Pr[Ψk = p, yk|Ψk+1 = q]

= Pr[Ψk = p, yk, Ψk+1 = q]/Pr[Ψk+1 = q]

= Pr[Ψk+1 = q, yk|Ψk = p] · Pr[Ψk = p]/Pr[Ψk+1 = q]

= γk(p, q) · Pr[Ψk = p]/Pr[Ψk+1 = q]

Pr[Ψk+1 = q,yl>k] = Pr[yl>k|Ψk+1 = q] · Pr[Ψk+1 = q]

132

= βk+1(q) · Pr[Ψk+1 = q]

Pr[yk,yl>k] =
∑
u

Pr[yl>k−1, Ψk = u]

=
∑
u

Pr[yl>k−1|Ψk = u]Pr[Ψk = u]

=
∑
u

βk(u)Pr[Ψk = u].

Substituting (78) in (77), one obtains

q̂ = arg max
q

{γk(p, q) · βk+1(q)} (79)

by ignoring the terms irrelevant to maximization and assuming that all next states

are equally likely.

133

REFERENCES

[1] Anastasopoulos, A., Adaptive soft-in soft-output algorithms for iterative de-
tection. PhD thesis, University of Southern California, California, August 1999.

[2] Anastasopoulos, A. and Chugg, K. M., “Adaptive soft-in soft-output algo-
rithms for iterative detection with parametric uncertainty,” IEEE Trans. Com-
mun., vol. 48, pp. 1638–1649, October 2000.

[3] Anastasopoulos, A. and Chugg, K. M., “Adaptive iterative detection
for phase tracking in turbo-coded systems,” IEEE Trans. Commun., vol. 49,
pp. 2135–2144, December 2001.

[4] Andrea, A. N., Mengali, U., and Vitetta, G. M., “Approximate ML de-
coding of coded PSK with no explicit carrier phase reference,” IEEE Trans. Com-
mun., vol. 42, pp. 1033–1039, Feb/Mar/Apr 1994.

[5] Bahl, L. R., Cocke, J., Jelinek, F., and Raviv, J., “Optimal decoding
of linear codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory,
vol. IT-20, pp. 248–287, March 1974.

[6] Barbosa, L. C., “Maximum likelihood sequence estimators: A geometric
view,” IEEE Trans. Inform. Theory, vol. 35, pp. 419–427, March 1989.

[7] Barry, J. R., Kavc̆ić, A., McLaughlin, S. W., and Nayak, A. R., “Iter-
ative timing recovery,” IEEE Signal Processing Magazine, vol. 21, pp. 89–102,
January 2004.

[8] Barry, J. R., Lee, E. A., and Messerschmitt, D. G., Digital Communi-
cation. Boston, Massachusetts: Kluwer Academic Publishers, third ed., 2003.

[9] Bergmans, J. W., Digital baseband transmission and recording. Boston, Mas-
sachusetts: Kluwer Academic Publishers, 1996.

[10] Berrou, C., Glavieux, A., and Thitimajshima, P., “Near Shannon limit
error-correcting coding and decoding: Turbo codes,” in Proc. of ICC’93, vol. 2,
pp. 1064–1070, May 1993.

[11] Burr, A. G. and Zhang, L., “Iterative joint synchronisation and turbo-
decoding,” IEEE International Symposium on Information Theory, p. 414, June
30 – July 5 2002.

[12] Caroselli, J. and Wolf, J. K., “Error event characterization of par-
tial response systems in magnetic recording systems with medium noise,” in
Proc. of Globecom’98, vol. 5, pp. 2724–2728, November 1998.

134

[13] Chiavaccini, E. and Vitetta, G. M., “A per-survivor phase-estimation algo-
rithm for detection of PSK signals,” IEEE Trans. Commun., vol. 49, pp. 2059–
2061, December 2001.

[14] Chugg, K. M., Anastasopoulos, A., and Chen, X., Iterative Detection
- Adaptivity, Complexity Reduction, and Applications. Boston, Massachusetts:
Kluwer Academic Publishers, 2000.

[15] Cideciyan, R. D., Dolivo, F., Hermann, R., Hirt, W., and Schott, W.,
“A PRML system for digital magnetic recording,” IEEE J. Selected Areas Com-
mun., vol. 10, pp. 38–56, January 1992.

[16] Colavolpe, G., Ferrari, G., and Raheli, R., “Reduced-state BCJR-type
algorithms,” IEEE J. Selected Areas Commun., vol. 19, pp. 848–859, May 2001.

[17] Conway, T., “A new target response with parity coding for high density mag-
netic recording channels,” IEEE Trans. Magnetics, vol. 34, pp. 2382–2386, June
1998.

[18] Corazza, G. E., Polydoros, A., Coralli, A. V., Salmi, P., and Cioni,

S., “Performance analysis of PSP based joint data decoding and phase/frequency
estimation in satellite communications,” in Proc. IEEE 11th Int. Symp. Per-
sonal, Indoor and Mobile Radio Communication, PIMRC2000, vol. 1, pp. 544–
548, September 2000.

[19] Duel-Hallen, A. and Heegard, C., “Delayed decision-feedback sequence
estimation,” IEEE Trans. Commun., vol. 37, pp. 428–436, May 1989.

[20] Eleftheriou, E. and Hirt, W., “Noise-predictive maximum-likelihood
(NPML) detection for the magnetic recording channel,” in Proc. of ICC’96,
vol. 1, pp. 556–560, June 1996.

[21] Esteves, E. S. and Sampaio-Neto, R., “A per-survivor phase acquisition and
tracking algorithm for detection of TCM signals with phase jitter and frequency
error,” IEEE Trans. Commun., vol. 45, pp. 1381–1384, November 1997.

[22] Eyuboğlu, M. V. and Qureshi, S. U., “Reduced-state sequence estima-
tion for coded modulation on intersymbol interference channels,” IEEE J. Se-
lected Areas Commun., vol. 7, pp. 989–995, August 1989.

[23] Fitzpatrick, J., Wolf, J. K., and Barbosa, L., “New equalizer targets for
sampled magnetic recording system,” in Proc. of the 25th Asilomar Conference
on Signals Systems and Computers, vol. 1, pp. 30–34, November 1991.

[24] Forney, G. D., “Maximum-likelihood sequence estimation of digital sequences
in the presence of intersymbol interference,” IEEE Trans. Inform. Theory,
vol. IT-18, pp. 363–378, May 1972.

135

[25] Franz, V. and Anderson, J. B., “Concatenated decoding with a reduced-
search BCJR algorithm,” IEEE J. Selected Areas Commun., vol. 16, pp. 186–195,
February 1998.

[26] Gallager, R., “Low-density parity-check codes,” IRE Trans. Inform. Theory,
vol. IT-8, pp. 21–28, January 1962.

[27] Georghiades, C. N. and Snyder, D. L., “The expectation-maximization al-
gorithm for symbol unsynchronized sequence detection,” IEEE Trans. Commun.,
vol. 39, pp. 54–61, January 1991.

[28] Hagenauer, J. and Hoeher, P., “A Viterbi algorithms with soft-decision
outputs and its applications,” in Proc. of Globecom’89, pp. 1680–1686, November
1989.

[29] Hagenauer, J., Offer, E., and Papke, L., “Iterative decoding of binary
block and convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 429–
445, March 1996.

[30] Heegard, C. and Wicker, S. B., Turbo Coding. Boston, Massachusetts:
Kluwer Academic Publishers, 1999.

[31] Iltis, R. A., “A Bayesian maximum-likelihood sequence estimation algorithm
for a priori unknown channels and symbol timing,” IEEE J. Selected Areas Com-
mun., vol. 10, pp. 579–588, April 1992.

[32] Immink, K. A. S., “Runlength-limited sequences,” Proceeding of the IEEE,
vol. 78, pp. 1745–1759, November 1990.

[33] Jin, X. and Kavc̆ić, A., “Cycle-slip detection using soft-output information,”
in Proc. of ICC’01, vol. 9, pp. 2706–2710, June 2001.

[34] Kovintavewat, P. and Barry, J. R., “EXIT chart analysis for iterative
timing recovery,” to appear in Proc. of Globecom’04, Dallas, Texas, November
29 – December 3, 2004.

[35] Kovintavewat, P., Barry, J. R., Erden, M. F., and Kurtas, E., “Per-
survivor iterative timing recovery for coded partial response channels,” to appear
in Proc. of Globecom’04, Dallas, Texas, November 29 – December 3, 2004.

[36] Kovintavewat, P., Barry, J. R., Erden, M. F., and Kurtas, E., “Per-
survivor processing (PSP) -based timing recovery for uncoded partial response
channels,” to appear in Proc. of ICC’04, Paris, France, June 20-24, 2004.

[37] Kovintavewat, P., Erden, M. F., Kurtas, E., and Barry, J. R., “A new
timing recovery architecture for fast convergence,” IEEE International Sympo-
sium on Circuits and Systems (ISCAS), vol. 2, pp. 13–16, May 2003.

136

[38] Kovintavewat, P., Erden, M. F., Kurtas, E., and Barry, J. R., “Over-
sampled timing recovery for magnetic recording channels,” in Proc. of the IEEE
International Conference on Magnetics (Intermag) 2003, pp. DT–06, March 30
– April 3, 2003.

[39] Kovintavewat, P., Ozgunes, I., Kurtas, E., Barry, J. R., and
McLaughlin, S. W., “Generalized partial response targets for perpendicu-
lar recording with jitter noise,” IEEE Trans. Magnetics, vol. 38, pp. 2340–2342,
September 2002.

[40] Kovintavewat, P., Ozgunes, I., Kurtas, E., Barry, J. R., and
McLaughlin, S. W., “Generalized partial response targets for perpendicular
recording,” in Proc. of the IEEE International Conference on Magnetics (Inter-
mag) 2002, pp. GP–03, April 28 – May 2, 2002.

[41] Lay, N. E. and Polydoros, A., “Per-survivor processing for channel acqui-
sition, data detection and modulation classification,” Conference Record of the
Twenty-Eighth Asilomar Conference on Signals, Systems and Computers, vol. 2,
pp. 1169–1173, October 31 – November 2, 1995.

[42] Leon-Garcia, A., Probability and random processes for electrical engineering.
New york: Addison-Wesley Publisher Company, Inc., second ed., 1994.

[43] Lottici, V. and Luise, M., “Embedding carrier phase recovery into iterative
decoding of turbo-coded kiner modulation,” IEEE Trans. Commun., vol. 52,
pp. 661–669, April 2004.

[44] Lottici, V. and Luise, M., “Iterative carrier phase synchronization for coher-
ent detection of turbo-coded modulation,” in Proc. European Wireless, p. 140,
February 2002.

[45] Mallory, P., “A maximum likelihood bit synchronizer,” International
Telemetrin Conf., Proc., IV (1968), pp. 1–16, 1968.

[46] Mengali, U. and Andrea, A. N., Synchronization techniques for digital re-
ceivers. New York: Plenum Press, 1997.

[47] Messerschmitt, D. G., “Design of finite impulse response for the viterbi algo-
rithm and decision-feedback equalizer,” in Proc. of ICC’74, pp. 37D–1–5, June
1974.

[48] Meyr, H., Moeneclaey, M., and Fechtel, S. A., Digital Communication
Receivers: Synchronization, Channel Estimation, and Signal Processing. New
York: John Wiley & Sons, Inc., 1997.

[49] Mielczarek, B., “Synchronization in turbo coded systems,” Tech. Rep.
342L, Department of Signals and Systems, Chalmers University of Technology,
Göteborg, Sweden, April 2000.

137

[50] Moision, B. E., Siegel, P. H., and Soljanin, E., “Distance-enhancing for
digital recording,” IEEE Trans. Magnetics, vol. 34, pp. 68–74, January 1998.

[51] Moon, J. and Park, J., “Pattern-dependent noise prediction in signal-
dependent noise,” IEEE J. Selected Areas Comm., vol. 19, pp. 730–743, June
2001.

[52] Moon, J. and Carley, L. R., “Performance comparison of detection meth-
ods in magnetic recording,” IEEE Trans. Magnetics, vol. 26, pp. 3155–3172,
November 1990.

[53] Moon, J. and Zeng, W., “Equalization for maximum likelihood detector,”
IEEE Trans. Magnetics, vol. 31, pp. 1083–1088, March 1995.

[54] Mueller, K. H. and Müller, M., “Timing recovery in digital synchronous
data receivers,” IEEE Trans. Commun., vol. COM-24, pp. 516–531, May 1976.

[55] Nayak, A. R., Iterative timing recovery for magnetic recording channels with
low signal-to-noise ratio. PhD thesis, Georgia Institute of Technology, Georgia,
June 2004.

[56] Nayak, A. R., Barry, J. R., and McLaughlin, S. W., “Joint tim-
ing recovery and turbo equalization for coded partial response channels,”
IEEE Trans. Magnetics, vol. 38, pp. 2295–2297, September 2003.

[57] Noels, N., Herzet, C., Dejonghe, A., Lottici, V., Steendam, H.,
Moeneclaey, M., Luise, M., and Vandendorpe, L., “Turbo synchroniza-
tion: An EM algorithm interpretation,” in Proc. of ICC’03, vol. 4, pp. 2933–2937,
May 2003.

[58] Nuriyev, R. and Anastasopoulos, A., “Analysis of joint iterative decod-
ing and phase estimation for the noncoherent AWGN channel using density
evolution,” IEEE International Symposium on Information Theory, Lausanne,
Switzerland, p. 168, June 30 – July 5, 2002.

[59] Oenning, T. R. and Moon, J., “Partial response maximum likelihood detec-
tion for perpendicular recording,” IEEE International Conference on Magnetics
(INTERMAG) 2000, pp. HT–08, 2000.

[60] Oh, W. and Cheun, K., “Joint decoding and carrier phase recovery algorithm
for turbo codes,” IEEE Communications Letters, vol. 5, pp. 375–377, September
2001.

[61] Otnes, R. and Tüchler, M., “Exit chart analysis applied to adaptive turbo
equalization,” in Proc. Nordic Signal Processing Symposium, October 2002.

[62] P. R. Chevillat, E. E. and Maiwald, D., “Noise-predictive partial-response
equalizers and applications,” in Proc. of ICC’92, vol. 2, pp. 942–947, June 1992.

138

[63] Qureshi, S. U. and Forney, G. D., “Performance and properties of a T/2
equalizer,” Conference Record, NTC 1977, December 1977.

[64] Raghaven, S. and Thapar, H. K., “Feed-forward timing recovery for digital
magnetic recording,” in Proc. of ICC’91, vol. 2, pp. 794–798, June 1991.

[65] Raheli, R., Polydoros, A., and Tzou, C.-K., “The principle of per-
survivor processing: a general approach to approximate and adaptive MLSE,”
in Proc. of Globecom’91., vol. 2, pp. 1170–1175, December 1991.

[66] Raheli, R., Polydoros, A., and Tzou, C.-K., “Per-survivor processing: a
general approach to MLSE in uncertain environments,” IEEE Trans. Commun.,
vol. 43, pp. 354–364, Feb/Mar/Apr 1995.

[67] Raphaeli, D. and Zarai, Y., “Combine turbo equalization and turbo decod-
ing,” in Proc. of Globecom’97, vol. 2, pp. 639–643, November 1997.

[68] Rizos, A. D. and Proakis, J. G., “Reduced-complexity sequence detection
approaches for PR-shaped, coded linear modulations,” in Proc. of Globecom’97,
vol. 1, pp. 342–346, November 1997.

[69] Roscamp, T. A., Boerner, E. D., and Parker, G. J., “Three-dimensional
modeling of perpendicular recording with soft underlayer,” J. of Applied Physics,
vol. 91, May 2002.

[70] Seshadri, N. and Anderson, J. B., “Decoding of severely filtered modulation
codes using the (M,L) algorithm,” IEEE J. Selected Areas Commun., vol. 7,
pp. 1006–1016, August 1989.

[71] Shafiee, H., “Timing recovery for sampling detectors in digital magnetic
recording,” in Proc. of ICC’96, vol. 1, pp. 577–581, January 1996.

[72] Simmons, J. B. and Mohan, S., “Sequential coding algorithms: A survey and
cost analysis,” IEEE Trans. Commun., vol. COM-32, pp. 169–176, February
1984.

[73] Simmons, S. J., “Breadth-first trellis decoding with adaptive effort,”
IEEE Trans. Commun., vol. COM-38, pp. 3–12, January 1990.

[74] Simmons, S. J. and Senyshyn, P., “Reduced-search trellis decoding of coded
modulations over ISI channels,” in Proc. of Globecom’90, vol. 1, pp. 393–396,
December 1990.

[75] Souvignier, T., Friedmann, A., Öberg, M., Siegel, P. H., Swanson,

R. E., and Wolf, J. K., “Turbo decoding for PR4: parallel vs. serial concate-
nation,” in Proc. of ICC’99, vol. 3, pp. 1638–1642, June 1999.

[76] Steendam, H., Noels, N., and Moeneclaey, M., “Iterative carrier phase
synchronization for low-density parity-check coded system,” in Proc. of ICC’03,
vol. 5, pp. 3120–3124, May 2003.

139

[77] Suzuki, T., “Perpendicular magnetic recording: Its basics and potential for the
future,” IEEE Trans. Magnetics, vol. MAG-20, pp. 675–680, September 1984.

[78] Tan, J. and Stüber, G. L., “New SISO decoding algorithms,”
IEEE Trans. Commun., vol. 51, pp. 845–848, June 2003.

[79] Tüchler, M., Koetter, R., and Singer, A., “Turbo equalization: Principles
and new results,” IEEE Trans. Commun., vol. 50, pp. 754–767, May 2002.

[80] ten Brink, S., “Convergence behavior of iteratively decoded parallel concate-
nated codes,” IEEE Trans. Commun., vol. 49, pp. 1727–1737, October 2001.

[81] Thapar, H. K. and Patel, A. M., “A class of partial response systems for in-
creasing storage density in magnetic recording,” IEEE Trans. Magnetics, vol. 23,
pp. 3666–3668, September 1987.

[82] Ungerboeck, G., “Fractionally tap-spacing equalizer and consequences for
clock recovery in data modem,” IEEE Trans. Commun., vol. COM-24, pp. 856–
864, August 1976.

[83] Vanelli-Coralli, A., Salmi, P., Cioni, S., Corazza, G. E., and Poly-

doros, A., “A performance review of PSP for joint phase/frequency and data
estimation in future broadband satellite networks,” IEEE J. Selected Areas Com-
mun., vol. 19, pp. 2298–2309, December 2001.

[84] Walsh, J. W., Johnson, C. R., and Regalia, P. A., “Joint synchronization
and decoding exploiting the turbo principle,” in Proc. of the 38th Conference on
Information Sciences and Systems, 2004, pp. 17–19, March 2004.

[85] Wang, S. X. and Taratorin, A. M., Magnetic Information Storage Technol-
ogy. San Diego: Academic Press, 1999.

[86] Wicker, S. B., Error control systems for digital communication and storage.
Upper Saddle River, New Jersey: Printice Hall International, 1995.

[87] Wu, Z.-N., Cioffi, J. M., and Fisher, K. D., “A MMSE interpolated timing
recovery scheme for the magnetic recording channel,” in Proc. of ICC’97, vol. 3,
pp. 1625–1629, 1997.

[88] Zhang, L. and Burr, A. G., “A new method of carrier phase recovery for
BPSK system using turbo-codes over AWGN channel,” in Proc. of the 12th
IEEE International Symposium on Personal, Indoor and Mobile Radio Com-
munications 2001, vol. 1, pp. A179–A183, October 2001.

140

VITA

Piya Kovintavewat was born in Bangkok, Thailand, in 1972. He received the B.Eng.

degree summa cum laude from Thammasat University, Thailand, in March 1994. Af-

ter graduation, he worked as an engineer at Thai Telephone and Telecommunication

company, one of the country’s largest telephone operators, for three and a half years.

In September 1997, he was granted a scholarship by the Swedish Foundation for In-

ternational Cooperation in Research and Higher Education to study for the M.Sc.

degree at Chalmers University of Technology, Göteborg, Sweden. After receiving the

M.Sc. degree in November 1998, he joined the National Electronics and Computer

Technology Center, a dynamic organization responsible for the development of In-

formation Technology in Thailand. As a research assistant, he was involved in two

main projects, namely, public-key infrastructure and Thailand smart card standard.

In January 2000, he received a scholarship from the royal Thai government to pur-

sue the Ph.D. degree in electrical engineering at Georgia Institute of Technology,

Atlanta, GA, USA. During his Ph.D. stay, he was partly supported by Seagate Tech-

nology under the guidance of Prof. John R. Barry. He also obtained work experiences

with Seagate Technology, Pittsburgh, PA, USA, in the summers of 2001, 2002, and

2004. He received the Ph.D. degree in December 2004. He will join Nakhon Pathom

Rajabhat University, Thailand, as an Assistant Professor, whose responsibilities in-

clude educating students, conducting researches, participating in the planning process

of educational plans, and developing the national science and technology infrastruc-

ture. His main research interests include coding and signal processing techniques for

data storage systems and wireless communication systems, with emphasis on timing

recovery, equalization, and error-correction decoding.

141

