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Summary

Knowledgeof the channelis valuablefor equalizerdesign.To estimatethe channela
training sequenceknown to the transmitterand the recever, is normally transmitted.
However, transmissionof a training sequencealecreaseshe systemthroughput.Blind
channelestimationusesonly the statisticsof the transmittedsignal. Thus, it requiresno

training sequence, increasing the throughput.

Mostreal-life communicatiorsystememploy someform of errorcontrolcode(ECC)
to improve the systemperformanceundernoise.In fact, with the adwent of turbo codes
and turbo equalization,reliable transmissionat a signal to noiseratio (SNR) close to
capacityis now feasible.However, blind estimatorghatignore the codemay fail at low
SNR. Recently blind estimatorshave beenproposedhat exploit the ECC andwork well
at low SNR. Thesealgorithms are inspired by turbo equalizersand the expectation-

maximization (EM) channel estimator

The objectve of this researchis to develop a low-compleity ECC-avare blind
channelestimator We first proposethe extended-windw (EW) algorithm, a channel
estimator that is less complex than the EM estimator and has better corvergence
properties.Furthermore the EM algorithm usesthe computationallycomplex forward-
backwardrecursion(BCJRalgorithm)for symbolestimation With the EW estimatoyary

soft-output equalizer may be used, ailog for further compleity reduction.

Xii



We then proposethe soft-feedbackequalizer (SFE), a low-complity soft-output
equalizethatcanusea priori informationon thetransmittecsymbols,andis thussuitable
for turbo equalization.The coeficients of the SFE are chosento minimize the mean-
squarederror betweenthe equalizeroutputandthe transmittedsymbols,and dependon
the“quality” of thea priori informationandthe equalizeroutput.Simulationresultsshov
that the SFE may perform within 1 dB of a systemusing a BCJR equalizey and

outperforms other schemes of comparable coxitgle

Finally, we shav how the SFEandthe EW algorithmsmay be combinedto form the
turbo estimator(TE), a linearcompleity ECC-avare blind channelestimator We showv
thatthe TE performscloseto systemswith channeknowledgeat low SNR,whereECC-

ignorant channel estimatorailf

Xiii



CHAPTER 1

I ntroduction

Error-controlcodes(ECC), or channelkodesallow for reliabletransmissiorof digital
information in the presenceof noise. Through this process,an information-bearing
sequencef lengthK, calleda message, is mappedpr encodedinto anothersequencef
lengthN > K, calleda codeword. This encodingntroducesedundany, but it alsorestricts
the numberof possibletransmittedcodevords, allowing for reliable communicatiorat a
lower signal-to-noiseratio (SNR) [1]. The codevord is then modulatedand transmitted
throughthe communicationschannel. The receved signalis a distortedversion of the
modulatedcodevord; in particular communicationshannelsntroducenoise,normally
modeledas additive white Gaussiamoise (AWGN), and intersymbolinterference(ISl),
the efects of which are normally modeled by a linear filter

Therecever goalcanbevery clearlyandconciselydescribedthetransmittednessage
bits shouldbe estimatedat therecever accordingo arule thatminimizesthebit errorrate
(BER). Assuming equally likely messagebits, this rule can be implementedwith a
maximume-likelihood (ML) detectoywhich estimateseachmessagéit soasto maximize

the likelihood of observing the reseid signal conditioned on the message bit [1].



ML detectorgointly andoptimally performall recevertasks suchassynchronization,
timing recovery, channel estimation, equalization, demodulation and decoding.
Unfortunately the computationalcompleity of ML recevers is prohibitive. In some
cases,such as codedsystemswith interleavers, an ML recever hasto considerevery
possible transmittedmessagendependently For messageof 1,000 bits, this means
considering2!:9%0 messagesmuch more than the current estimatefor the number of
atomsin the universe[2]. Until the promiseof quantumcomputergwhich theoretically
could analyzeall possiblemessagesimultaneously)is realized[3], or until a better
stratgy is discovered, exact ML detectionwill remaina benchmarkand an object of
theoretical inestigation.

Traditionally, recevers employ a suboptimal divide-and-conquerapproach for
recoveringthetransmittednessagdérom therecevedsignal.First, timing is estimated1]
andthe signalis sampledThenthe equalizeparameterareestimated1,4-8]. After that,
theequalizeremovesthelSI introducedby the channel1], sothatits outputcanbe seen
asa noise-corruptedersionof the transmittedcodevord. Finally, the equalizeroutputis
fed to the channeldecoderwhich, exploiting the beneficialeffects of channelencoding,
estimates the transmitted message [2].

The divide-and-conqueapproachis clearly suboptimal.Considey for instance the
problemof channelestimation.Traditionally, the channelis estimatedoy transmittinga
known sequence,called a training sequence[l1,4,5], and the receved samples
correspondingo the training sequenceare usedfor estimation.However, this approach,
known astrained estimation,ignoresreceved samplescorrespondindo the information

bits, and thus doesnot use all the information available at the recever. To improve



performancethe channelmay be estimatedbasedon all receved samples,n what is
known assemi-blind estimation6]. Channekestimations still possibleevenif notraining
sequenceis available. In this case,we obtain blind channel estimates[7,8]. When
performing blind or semi-blind channel estimation under the divide-and-conquer
framawork, the fact that the transmittedsignalis restrictedto be a codevord of a given
channelcode is not exploited. However, it seemsclear that performancewould be
improved if the channel encoding were ¢akinto account.

In this work, we proposethe blind turbo estimator (TE), a low computational
complity techniguefor exploiting the presencef ECCin blind andsemi-blindchannel
estimation. This work has four facets: channel estimation, blind and semi-blind
techniguesthe exploitation of ECC, andlow computationatomplity. The importance

of each &cet is discussed balo

» Channelestimation Channelestimatesarerequiredby the ML equalizerandcan

be usedto computethe coeficientsof suboptimabut lower-compleity equalizers
suchastheminimummean-squaredrror(MMSE) linearequalizeLE) [1], or the
MMSE decision-feedbackqualizer(DFE) [1]. Eventhoughthe MMSE-LE and
the MMSE-DFE canbe estimatedlirectly, having the channelestimatesllows us
to choosewhich equalizeris more appropriatefor the channel.For instance,in

channels with deep spectral nulls, DFE iswkndo perform better than LE.

» Blind and semi-blind techniques By using every available channeloutput for

channelestimation,semi-blind techniquegperform better than techniquesbased
solelyonthechannebutputscorrespondingdo trainingsymbolsandthuscanusea

shortertraining sequencg6]. Therefore semi-blindandblind techniquesncrease



thethroughpuif a systemby requiringa smalltraining sequencer nonewhatso-
ever. Eavesdroppings anotherapplicationof blind channelestimation.The eares-
droppemay notknow whatthetrainingsequencés andhencehasto rely on blind

estimation techniques.

Exploitation of ECC. Most of the existing blind channelestimationtechniques

operatewithin the divide-and-conqueframework, ignoring the presenceof ECC,
and normally assuminghat the transmittedsymbolsare independentaindidenti-
cally distributed (iid). This approachworks well at high signal-to-noiseratio
(SNR). However, the last decadehasseenthe discovery of powerful ECC tech-
niquessuchasturbo codesand low-density parity checkcodes[9-11] that, with

reasonableompleity, allow reliabletransmissiorat an SNR only fractionsof a
dB from channelcapacity Whenpowerful codesare usedand systemsoperateat
low SNR,blind andsemi-blindestimationtechniqueshatignoreECCaredoomed
to fail. This obsenation motivatedthe studyof blind ECC-avarechannelestima-

tors in [12-17].

Low computationalcompleity. The persymbol computationalcompleity of

existing ECC-avarechannelestimatordgs exponentialin the memoryof the chan-
nel. However, in applicationssuchasxDSL andhigh-densitymagneticrecording,
the channelimpulsecanhave tensor even hundredsof coeficients. For channels
with long memory existing ECC-avarechannelestimatorsare prohibitively com-

plex, which motvates the study of Wo-compleity techniques.



Examplesaboundthat shawv that it is possibleto improve the performanceof the
divide-and-conquerapproachsimply by having the recever componentscooperate
through an iteratve exchangeof information. For instance,in turbo equalizerg[18,19]
(whichassumehanneknowledge) thedecodeoutputis usedby theequalizerasa priori
informationon thetransmittedsymbols.This producesmproved equalizeroutputs,which
in turn produceimproved decoderoutputs,andso on. By iteratingbetweenthe equalizer
andthedecoderturboequalizersachieve aBER muchsmallerthanthatof the divide-and-
conguerapproachwith reasonableompleity. Iteratve channelestimatord6,20-28]are
anotherimportantclassof iterative algorithmsthat performbetterthantheir noniteratve
counterpartsin thesealgorithms aninitial channelestimatas usedby a symbolestimator
to provide tentatve estimateof thefirst- and/orsecond-ordestatisticsof the transmitted
symbol sequenceThesestatisticsare then usedby a channelestimatorto improve the
channekestimatesTheimproved channelestimatesrethenusedby the symbolestimator
to improve the estimates of the statistics, and so on.

Turbo equalizersand iteratve channel estimatorsnormally rely on the forward-
backwardalgorithmby Bahl, Cocke, JelinekandRaviv (BCJR)[29] for equalizationThis
algorithm computeghe a posteriori probabilities(APP) of the channelinputs given the
channeloutput, channelestimatesanda priori probabilitieson the channelinputs,and
assuminghat the channelinputs areindependentln otherwords,if an ECC is present,
this presence is ignored.

The BCJRalgorithmis well-suitedfor iterative systemssinceit canusethe a priori
information at its input to improve the quality of its outputand sinceit computessoft

symbolestimatesn the form of APP. However, its persymbolcomputationabompleity



increasesxponentiallywith the channelmemory and henceis prohibitive for channels
with alongimpulseresponseThis hasmotivatedthe developmentof reduced-compbaty
alternatves to the BCJR algorithm, such as the equalizersproposedin [30-38]. The
structuresgproposedn [30-35] usea linear filter to equalizethe receved sequenceThe
output of this filter containsresidual ISI, which is estimatedbasedon the a priori
information, and then cancelled.Reduced-statalgorithmsare investicated in [36-38];
however, these are more compgléhan the structures based on linear filters.

In this work, we proposethe soft-feedback equalizer (SFE), a low-compleity
alternatve to the BCJRalgorithmbasedon filters thatis similar to thoseproposedn [30-
35]. Oneimportantdifferences thatthe SFEusesa structuresimilarto a DFE, combining
the equalizeroutputsand a priori information to form more reliable estimatesof the
residuallSI. A similar systemis proposedn [35] thatusesharddecisionsonthe equalizer
outputto estimatetheresiduallSI. However, becausdarddecisionsareusedandbecause
the equalizeroutputis not combinedwith the a priori information beforea decisionis
made, the DFE-li& system of [35] performsarse than schemes without feedback.

As in [32-35], the SFEdoesnot rely solely oninterferencecancellation(IC). Instead,
the SFE coeficients are computedso as to minimize the mean-squareerror (MSE)
betweenthe equalizer output and the transmitted symbol. The resulting equalizer
coeficientsdependon the quality of the equalizeroutputandthea priori information.By
assuminga statisticalmodel for the equalizeroutputsandthe a priori information, we
obtaina linearcompleity, time-invariantequalizer In contrastthe MMSE structuresn

[32-35] have to be computedor every symbol,resultingin a persymbolcompleity that



is quadraticin the length of the equalizer A similar statisticalmodelis usedin [39] to
obtain a time-invariant, linearcompleity, hard-input hard-outputequalizer with ISl
cancellation.

We will seethatin specialcasesthe SFEreduceso an MMSE-LE, an MMSE-DFE,
or an IC. We will shav that the SFE performsreasonablywell when comparedto the
BCJRalgorithmandthe quadraticcompleity algorithmsin [32-35], while it outperforms
other structures of comparable conxitye proposed in the literature.

Iteratve channelestimatordit theiteratve paradigmdepictedin Fig. 1. In this figure,
a symbol estimatorproducessoft information on the transmittedsymbolsbasedon the
channelestimates,k, and the noise variance estimate, 6, provided by the channel
estimatorThechannekstimatoithenuseghe softinformationonthetransmittedsymbols
to computeimproved channelestimatesThe new channelestimatesarethenusedby the
symbol estimatorto computebetter soft information, and so on. The most important
iterative estimatoy on which mostotheriterative estimatorsarebasedjs the expectation-
maximization(EM) algorithm[40,41].In this algorithm,the symbolestimatorin Fig. 1 is
basedon the BCJR algorithmand producessoft estimatesof the first- and second-order

statistics of the transmitted symbols.

CHANNEL SYMBOL
ESTIMATOR ESTIMATOR

Fig. 1. Blind iteratve channel estimation.



The EM algorithm has two sources of complexity. First, it involves the computation
and inversion of a square matrix whose order is equal to the channel length. Second, and
most important, it uses the BCJR algorithm for equalization. In thiswork, we will obtain a
simplified EM (SEM) agorithm that avoids the matrix inversion without significantly
affecting performance, resulting in a complexity that is proportional to the channel length.
More interestingly, based on the SEM, the soft symbol estimator may be implemented
with any of a number of low-complexity alternatives to the BCJR algorithm, such as the
SFE. Low complexity alternatives to the EM channel estimator are also proposed in
[25,26]. However, in these strategies the complexity is reduced through the use of alow-
complexity alternative to the BCJR algorithm. Therefore, they are intrinsically tied to an
equalization scheme. Furthermore, the estimators proposed in [25,26] do not avoid the
matrix inversion, resulting in a quadratic computational complexity.

In this work, we will also investigate convergence issues regarding iterative channel
estimators. The EM algorithm generates a sequence of estimates with nondecreasing
likelihood. Hence, the EM estimates may converge to the ML solution. However, they may
also get trapped in anonglobal local maximum of the likelihood function. We will propose
a simple modification, caled the extended-windoveM (EW) algorithm, which greatly
decreases the probability of misconvergence without significantly increasing the
computational complexity.

Finally, by viewing a turbo equalizer as a soft symbol estimator, we combine turbo
equalization with iterative channel estimation. Since turbo equalizers provide soft symbol
estimates that benefit from the presence of channel coding, the resulting turbo estimation

scheme is an ECC-aware channel estimator. Thus, we have proposed the turbo estimator



(TE), a linear complexity blind channel estimator that benefits from the presence of
channel coding. Other ECC-aware channel estimators were proposed [12-16], but they are
al based on the EM algorithm and hence suffer al the complexity and convergence
problems mentioned above.

To summarize, the main contributions of thiswork are:

» The soft-feedback equalizer (SFE), a linear complexity equalizer that produces

soft symbol estimates and benefits from a priori information at its input.

* The simplified EM (SEM) algorithm, an iterative channel estimator that is less
complex than the EM algorithm and is not intrinsically tied to the BCJR equalizer,

which opens the door for further complexity reduction.

* The extended window (EW) algorithm, an iterative channel estimator that is less

prone to misconvergence than the EM algorithm.

* The turbo estimator (TE), an iterative channel estimator that benefits from the

presence of ECC to produce reliable channel estimates at low SNR.

This thesis is organized as follows. In Chapter 2, we present the channel model and
describe the problem we will investigate, and provide some background material on turbo
equalization and iterative channel estimation via the EM algorithm. In Chapter 3, we
propose the SEM, a channel estimator that is less complex than the EM algorithm. In
Chapter 4, we propose the EW algorithm, an extension to the SEM algorithm that makes it
is less likely than the EM to get trapped in a local maximum of the joint likelihood
function. In Chapter 5, we propose the SFE, a linear-complexity alternative to the BCIR

equalizer. In Chapter 6, we describe the application of the SFE to turbo equalization.



Please note that Chapters 5 and 6 are not related to Chapters 3 and 4. In Chapter 7, we
propose the TE, alinear complexity ECC-aware channel estimator that combines the EW
algorithm of Chapter 4 with the SFE-based turbo equalizer of Chapter 6. In Chapter 8 we

summarize the contributions of this thesis and present directions for future work.
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CHAPTER 2

Problem Statement and Background

In this chapter, we describe the model we will use for the communications system and
define the problem investigated in this research. We also provide background material on
two iterative techniques that solve parts of this problem: turbo equalization and iterative

channel estimation.

2.1 Problem Statement

We consider the system model shown in Fig. 2, where a binary message m = [mj, ...
mg_1] of length K is transmitted across a linear AWGN channel with memory p. The
channel and the noise are assumed to be real. A binary ECC encoder with rate K/ N maps
m t0 a sequence of binary phase-shift keying (BPSK) symbols ¢ = [cy), ... ¢n_1] Of length

N. Aswith wireless systems and systems employing turbo equalization, the codeword e is

AWGN

m ECC c a Y % r
™| ENCODER > Tt k

INTRLEAVER ISI

\i

Fig. 2. Channel model.
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permuted according to the interleaver Tt before transmission. Let {m(0), ... NV — 1)} bea
permutation of {0, ... N — 1}. Then, the interleaver output isa = [ay, ... ayq ], Witha;, =
Cruk):

Letr =[ry, ... r;, _ 11 denote the received sequence of length L = N + p, where

r.=hYay, +ny, (1)

where the channel impulse response is k = [hy, ... k1", where a;, = [ay, ... a_ 1" isthe
channel input, and where n; represents additive white Gaussian noise (AWGN) with
variance 2. For notational ease, we restrict our presentation to the BPSK alphabet, where
ay O {x1}. Theresultsin this work can be extended to other alphabets using the techniques
described in [33].

Ideally, we would like to solve the joint-ML blind channel estimation and symbol

detection problem, i.e., find

(hmL, By, iy ) = argmax log py, o(r 1 m), )

where log pp, (rim) is the log-likelihood function, defined as the logarithm of the
probability density function (pdf) of the received signal r conditioned on the channel input
m and parametrized by k& and o. Intuitively, the ML estimates hy , 6, , and e, are
those that best explain the received sequence, in the sense that we are lesslikely to observe
the channel output if we assume any other set of parametersto be correct, i.e., pj, o(rlm) <

szL,éML(rl my, ) O k, o, m. Besides this intuitive interpretation, ML estimates have
many interesting theoretical properties [4]. Under fairly general conditions, ML estimates

are asymptotically unbiased and efficient. In other words, under these general conditions

and as the number of transmitted symbols N tends to infinity, the expected value of the ML
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estimategendsto the actualvalue of the parameterswhile the varianceof the estimates
tendsto the CramérRaobound,which is the lowestvarianceachievable by any unbiased

estimator

Unfortunately the computational compleity of finding the ML estimatesis
prohibitive. In this work, we will study iterative approacheghat provide approximate
solutionsto the maximization problemin (2). The reasonfor the focus on iterative
approachess thatiterative techniquesuccessfullyprovide approximateML solutionsto

otherwise intractable problems, such as the viofig:

* On a codedsystemwith channelknowledge, turbo equalizersproducea good
approximationwith reasonableomputationatompleity, to the maximizationof

log p(rim).

e On an uncodedsystem,the EM algorithm provides a simple approximateML
channel estimate for the blind ECC-ignorant problem of maximizing
log pp o(rla@). Here, a is not restrictedto be a permutationof a codevord, but

instead can be gnvector of symbols of lengtN.

Thesetechniquesare formulatedin a framewvork that makesit almoststraightforvard to
combinethemin a more generaliterative algorithmthat performschannelidentification

and decoding, as we will see in chapter

One key ingredientof a successfuliteratve algorithm is the use of soft symbol
estimatesn theform of APP’s. For a generalalphabetz, the APPis afunctionfrom 4 to
theinterval [0,1] givenby Pr(aj = a I r), for a O 4. For a BPSK constellationthe APP is

fully captured by what is loosely referred to as the logliltood ratio (LLR), defined as

13



Pr(a;, = +1|r)

TheLLR hassomeinterestingpropertiesFor aBPSKalphabetthe signof L, determines
the maximuma posteriori (MAP) estimateof a;,, which minimizesthe probability of a
decisionerror, and its magnitudeprovides a measureof the reliability of the decision.
Furthermore L, can be usedto obtainthe MMSE estimateof a;, which, for a BPSK

alphabet, is gien bytanh(Ly, / 2).

Unfortunately exact evaluationof the APP is computationallyhard. In the next two
sectionswe will briefly review turboequalizersandthe EM algorithm,which areiterative
techniquesthat addresssimpler problemsand are the building blocks for the system

proposed in this ork.

2.2 Turbo Equalization

Assumingchanneknowledge,the goal of the decodeis to estimatePr(m, = 11r) for
eachmessagéit m;,, which is a computationallyhard problem. Turbo equalizersfirst
proposedn [18], provide alow complity approximatesolutionto this problem.In this
section, we ra@ew the turbo equalization algorithm.

Turboequalizersonsistof onesoft-inputsoft-output(SISO)equalizeyoneinterleaver

1T, onedeinterleaer Tr¢ , andone SISO channeldecoderasshavn in Fig. 3 for aBPSK

|| ECC
DECODER
d
L

Tt

—» EQ.

apriori

)\eT

Fig. 3. Turbo equalizer
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alphabet. Key to the low complexity of turbo equalizersis the fact that the SISO equalizer
ignores the presence of ECC, and the SISO decoder ignores the presence of the channel.
The resulting complexity is thus of the same order of magnitude as that of the divide-and-
conquer approach employing the same equalizer and decoder.

Turbo equalization is an iterative, block-processing algorithm whose first iteration is
the same as a divide-and-conquer detector. Indeed, the vector of a priori information at the
equalizer input, A° = [y, ... Ay_1], is initialy set to zero. The SISO equalizer then
computes the LLR vector L’ = [Ly, ... Lyy_4] of the codeword symbols a;, given the
channel observations r. These LLRs are computed exploiting only the structure of the IS|
channel; the ECC encoder is ignored. The equalizer output is then deinterleaved by the
deinterleaver Tt and passed to the decoder. Finally, using the deinterleaved values of L
and exploiting the code structure (the ISl channel is ignored, presumably because the
equalizer has removed its effects), the SISO decoder computes new LLRs of each
codeword symbol, L= [L‘f), L‘Jiv_ 11-

The difference between the first iteration and the later ones is that, for later iterations,
information is fed back from the decoder to the equalizer through A°, which isused as a
priori information by the equalizer. This feedback of information allows the equalizer to
benefit from the code structure, which provides improved soft information at the decoder
output. However, A’ does not correspond to the full probabilities at the decoder output.
Instead, as seen in Fig. 3, it is the difference between the LLRs at the input and the output
of the decoder. With this subtraction, A3, is not afunction of L;,, avoiding positive feedback

of information back to the equalizer. The LLRsin A° are called extrinsic information and
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can be seen as the information on the transmitted symbols gleaned by exploiting only the
structure of the decoder. The extrinsic information at the decoder input, )\d, can be

similarly defined.

2.2.1 The BCJR Algorithm

Ideally, the equalizer in Fig. 3 should be implemented with the BCJR algorithm, which
computes the APPs of the transmitted symbols given their a priori probabilities and the
channel observations. (Note that the only way ECC affects the BCJR equalizer is through
the a priori information; it is otherwise ignored.) Actually, the BCJR agorithm can be
defined for any trellis, and hence can also be used to implement the decoder for a
convolutional code. In the sequel, we will describe the BCJIR algorithm for equalization in
detail and then discuss the differences between the BCJIR equalizer and the BCJR decoder.

Let g, 010, 1, ... @ — 1} denote a state of the channel trellis at time &, where @ = |4
isthe number of states and |4| is the number of elements in the alphabet. Note that there is
a one-to-one correspondence between the value of Y, and the vector of symbols in the
channel memory, [a; _1 ... a; _ ). Also, let a®%) be the channel input that causes the
transition from state p to state q. Then, the APP Pr(a;, = a | r) can be computed as [29]

Pr(a, =alr) = Z Pr(p, =p; W 1=¢lr). @
{p.ga”?=a)
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Thekey obsenationleadingto the BCJRalgorithmis thatthe termsin the summation
in (4) canbe decomposedhto threefactors,onedependingonly on pastchanneloutputs
groupedin the vectorr;;, onedependingonly on future channeloutputsgroupedin the
vectorr,.;, and one dependingon the currentchanneloutputr,. Indeed,exploiting the

factthatthetrellis correspond$o a Markov processye get,aftersomemanipulation29],

Pr(Qy, =p; U+ 1=917) = (@) YV ®,9) Br + 1(@) / p(r), (5)
where
o) = p(Yy, =p; ricp), (6)
Br+1@) = prysp W 1+ 1=9), (7
Ve®:9) = pW 1 1= 11 W, = p). (8)

Note that, sincewe areinterestedn probability ratios,the factorp(r) in equation(5) is
irrelevant.
After further manipulationand consideratiorof the Markov property the following

recursions can be found for computmgp) andp(p) [29]:

Q-1
W@ = 5 A1) Vi(g.p) 9)
qg=0
Q-1
Be® = 5 Br+1@) Vi) (10)
g=0

The recursionsin (9) and (10) canleadto underflav on finite precisioncomputers.To
avoid this problem, it is commonto normalize o, and B, at eachtime %, so that
2, ai(p) = 1andZ, () = 1 [42].

Finally, to computey(p, q), write
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Ve®, @) = P, 4 1=¢; 711 W =p) (11)

= prp W =p; Wp 4 1= QPr(Yy . 1 =q Wy, =p). (12)

The second term in equation (12) is the probability that the channel input is the one that
causes a transition from state p to state ¢, a9, Thus, thisterm isthe a priori information
of the input of the SISO block. For a BPSK alphabet, when this a priori information is

givenintheform of theLLR )\Z, we get

(p.q)
a” N2

PI‘(lle+1=Q|l.|Jk=p)= i o (13)

A,/ 2 A /2'
k k
e t+e

Note that the denominator in (13) is common to al state transitions. Thus, since we are

interested in computing probability ratios, the denominator in (13) may be ignored.

Assuming AWGN, the first term of equation (12) can be computed as

Py W =p; W 1=9) = s expit I —rP P12 (14)

where 7> 9 s the noiseless channel output associated with the transition from state p to

state g. This completes the description of the BCJIR algorithm for equalization.

Since convolutional codes may aso be defined by a trellis, the BCJR algorithm may
also be used for decoding these codes. The algorithms for decoding and equalization

proceed in a similar manner. The main differences are as follows:

* The equalizer computes only the APPs of the channel inputs. In contrast, the

decoder computes the APP of the encoder output, a;, as well as the encoder input

my,, which will provide a MAP estimate of the transmitted message. Both these
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APPs may be computed by considering the appropriate state transitions in the sum-

mation in (4).

* While for the equalizer each trellis stage corresponds to a single channel output,
for the decoder atrellis stage may correspond to multiple outputs. For instance, a

rate 1/2 convolutional code has two outputs for every state transition. In general,
for aratek /n convolutional code, 17, — P> 9| in (14) isthe distance between vec-

tors of length n.

» For turbo equalizers, such as the structure depicted in Fig. 3, the decoder does not
have access to the channel output. Therefore, (14) reduces to a constant, and the

state transition probability v (p, ¢) depends only on the a priori information.

2.3 Blind Iterative Channel Estimation with the EM Algorithm

In many ML estimation problems, the difficulty in finding a solution stems from the
fact that some information about how the observed data was generated is missing. For
instance, in the blind channel estimation problem, finding the ML channel estimates
would be easy if the channel inputs were known. For ML problems that would be easily
solvable if the missing data were available, the EM algorithm is an interesting approach. It
is a low-complexity iterative algorithm that generates a sequence of estimates with non-
decreasing likelihood. Thus, with proper initialization, or if the likelihood function does
not posses local maxima, the EM agorithm will converge to the ML solution. In the
remainder of this section, we will describe the EM algorithm for blind channel estimation,

asfirst proposed in [22].
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In its most general form [40,41], the EM agorithm can be described as follows. Let
pe(r) be the likelihood function of the received samples, where 6 is the vector of
parameters we are trying to estimate. Let a be the missing data, and r be the sequence of
observations. Assume we have an estimate 6, of the parameters. Define the auxiliary

function
Q6, 6) = J’log(pe(r, a))pei (a|r)da=E, 0, [log(pg(r, @))| al, (25)

where E, 6, is the expected value with respect to the variable a, assuming that the actual
parameters are 6,. Now, consider computing a new estimate 6;,,; of the parameters
according to
8;.1 = argmax(Q(6, §,)). (16)
The key observations leading to the EM algorithm are that
» with an appropriate choice of a, computing and maximizing Q(6, 6,) may be an
easy task.
» thelikelihood of the new estimate 8, , ; is not smaller than that of 6;, i.e., p9i+1(r) >
Pe. (1) -
Given an initial estimate 6, the EM algorithm iteratively computes new estimates using

(15) and (16) until a stop criterion is met, thus generating a sequence of estimates with

nondecreasing likelihood.

When applied to the problem of blind channel estimation, the EM algorithm may be
described in more specific terms. In this case, we are trying to maximize the likelihood

function pg(r) = log pp, 4(r), Where 8 = [k, o] is the vector of parameters we are trying to
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estimate. As mentioned before, finding the values of A and o that maximize this likelihood
function is prohibitively complex. However, it is easy to determine the parameters that

maximize pg(r | @), in which case the solution is a simple MM SE channel estimate [4]:

s~ =N-1_  rqlnN-1
h = 51@:0“’3“’“5 Zk:orkak’ (17)
.2 1 <N-1 T 2

Thus, the transmitted symbols a are a good candidate for hidden information.

Having defined the missing variables, we can apply (15) and (16) to compute new

channel estimates. Let

- 1 N-1 T
R, = 55, Elaja,|r] (19)
A 1 «N-1

Pgr = Nzk:orkE[“kV']' (20)

Then, it is possible to show that the EM algorithm yields [22]

~ P
hl+1 :Ra par’ (21)

A2 1 N-1 T 2
0i+1=ﬁ kZOE[‘rk—hl+lak‘ ‘ri|

1<N-1, 2 _-T . T A -
=N 2pool#l —2Riv1Pg, + hiv1RaR; 41

1l -N-1 2 ~T
=N k=0|rk| —hi+1P,,, (22)

where the last equality follows from (21).

Note the similarities between (17) and (21), and between (18) and (22). The only
difference between these equationsisthat in (17) and (18) the actual transmitted sequence

is used, while in (21) and (22) the conditional a posteriori expected values are used. In

21



fact, R, and P, ae smilar to the estimated autocorrelation matrix of a and the
estimated cross-correlation vector between a and r, respectively. The main difference is
that we use E[aka,:: r] and r,Elay, | 7] to compute R, and p,,,, while akaZ and rpay,
are used to estimate the autocorrelation matrix of @ and the cross-correlation vector
between @ and r. Thus, we say that R, is an a posteriori sample autocorrelation matrix
and p,, isanaposteriori sample cross-correlation vector.

We dtill have to compute the values of E[aka,f r] and Ela;, | 7] a every iteration i.
This can be done with the BCJR algorithm, which is used under the assumption that the
channel parameters are given by h; and 6;. Since the BCJR algorithm computes
Pr(a;, | r), obtaining Ela;, | ] is straightforward. Also, note that each state transition in the
channel trellis actually corresponds to a vector a,. Thus, since the BCJR algorithm
computes the probabilities of state transition, Pr{y, = p; W, . 1 = ¢ 7], we in fact have
access to the joint APP of the vector a;,, which can be used to compute E[aka;‘: r].

The EM algorithm for blind channel estimation is summarized in the following
pseudocode:

Gven: initial channel estimates ho and aﬁ.

Fopest

run the BCIR al gorithm assum ng the channel is given by
h; and §;;
conpute R, and p,. as in (19) and (20),

conpute the new paraneter estimates as in (21) and (22);
until a stop criterion is found

This pseudocode can be represented graphically as in Fig. 4. In this figure, the BCJR
agorithm is used to compute R, and P, based on the channel estimates provided by the
channel estimator. The channel estimator then uses the outputs of the BCJR agorithm to

compute new channel estimates, which are then used by the BCJIR algorithm, and so on.
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Fig. 4. TheEM agorithm for blind iterative channel estimation.

The main drawbacks of the EM algorithm are that

it uses the BCJR algorithm to produce tentative symbol estimates, implying a com-

putational complexity that is exponential in the channel memory;
« it requires the computation of R, and the solution of the linear system in (21),
which have a computational complexity that is quadratic in the channel memory;

e it may get trapped in a local maximum of the likelihood function, converging to

wrong channel estimates;
* it may converge slowly.

In the following chapters, we propose techniques to circumvent these drawbacks. We will
propose a linear complexity technique that avoids some of the local maxima of the

likelihood function that trap the EM algorithm.
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CHAPTER 3

A Simplified EM Algorithm

As mentioned in Chapter 2, some of the complexity issues associated with the EM
algorithm stem from the need to compute and invert the a posteriori sample
autocorrelation matrix R, defined in (19). In this chapter, we derive the simplified EM
algorithm (SEM), an aternative iterative channel estimator that ignores R, and yet does
not significantly degrade the performance relative to the EM algorithm. For notational
convenience, in what follows we assume that the transmitted symbols belong to a BPSK

constellation. Generalization to other constellations is straightforward.

3.1 Derivation of the SEM Algorithm
Consider the channel model in equation (1), repeated here for convenience
ry = hTak + ny. (23)

Assuming that the transmitted symbols are uncorrelated, we have

hy = Elryap_p] (24)
= E[r,Pra,_, = + 11 7)] =E[ r,Pr(a;,_, = =1 |1 73)] (25)
= Elr,Pr(ay_, = + 117) = r,Pr(ay_, = -1 | 7)] (26)
= Elry, Elay_, | r]l. (27)
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This equationleadsto a simple channelestimator Unfortunately the channelestimator
hasno accesgo Ela, | r]l, which requiresexact channelknowvledge.However, basedon
theiterative paradigmof Fig. 1, atthei-th iterationthe channekestimatordoeshave access

~ (1)

to a,’ = E[ak|r; izi,c‘si] = tanh(L;/2). Using this value in (27), and also replacing

ensembleaveragewith time average the channelestimateat the i+1-st iterationis given

by:

iln,i+1 ]]\'7 . OrktanhDLk ntl (28)

Thus, (28) providesa methodfor estimatingthe channelgiven the soft symbolestimates
L,, and can be usedin the samecontet as the channelestimationstep of the EM
algorithm. Clearly, its implementatiorhasa persymbol complity thatis linearin the

length of the channel if the LLRs arevgn.

For estimatingthe noisevarianceo? atthei-th iteration,we proposeusingthe channel
estimatesn (28) andthe bit estimatebtainedfrom L, to estimatethe noisecomponent
of therecevedsignal,which arethenusedto estimatethe noisevariance.n otherwords,

letting a, =1[a,, ... &k_H]T, wherea, = sign(L;), we estimate the noisawance as

0”1_Nz ‘rk—ak L+1 , (29)
whereh; ;1 = [fzg,lur 1y - hu,i+1] . This estimatediffersfrom the EM estimatan (22),
but in our simulationswe notedthatusinga, insteadof E[ay, | r] for estimatingthe noise
variancemproved corvergencespeedFurtherjustificationfor the useof harddecisionsn

(29) will be gven in the net section.

The resulting algorithm is described by the failog pseudocode:
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, - ~2
initialize channel estimates ho and G,

i = 0;
r epeat
use channel estimates to conpute synbol estimates Ly, for
k =0, .. N1;
updat e channel estimates using (28) and (29);
=0 0+ 1

until a stop criterion is net

This algorithm will be referred to as simplified EM (SEM). Indeed, using the notation
from chapter 2, comparing (20) and (28) we seethat k; + 1 = P, - Therefore, (28) can be
seen as a simplification of the EM algorithm wherein R, is replaced by I. It is important
to point out that, from (19), R, = I is a reasonable approximation. In fact, E[aka,ﬂr] is
the MM SE estimate of aka,f given the current channel estimate. Thus, these two values
are expected to be approximately the same, so that R, is approximately a time-average
estimate of the autocorrelation matrix of the transmitted symbols. Since we assumed that
the channel input is white, based on the law of large numbers R, should be close to the

identity for large enough N.

An important implication of ignoring the matrix R, is that the channel estimator
reguires only the soft symbol estimates L, . Thus, we may represent the ssmplified channel

estimator as in Fig. 5, where the symbol estimator is not restricted to be the BCIR

™
o

CHANNEL SYMBOL
ESTIMATOR ESTIMATOR

N

Fig. 5. Blind iterative channel estimation with the SEM algorithm.
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equalizerIn fact, ary equalizerthat producessoft symbol estimatesan be used,which
allows for a low-compleity implementationof the blind iteratve channelestimator
Contrasthis figurewith Fig. 4, which representshe EM algorithm.In the EM algorithm,
the equalizeris restrictedto be the BCJRalgorithm,andit alsomustprovide a matrix to

the channel estimator

3.2 Analysis of the Scalar Channel Estimator

In this sectionwe provide a detailedanalysisof the SEM algorithmappliedto a scalar
channel Although a detailedanalysisof the SEM algorithmfor a generalchanneiwould
be of moreinterest,this analysisis difficult. Furthermorescalarchannelsestimatorsare
important,beingusedin systemshat are subjectto flat fading[43] andin systemshat
employ multicarriermodulation[44]. In performingthis analysis,we will alsocompare
the performancef systemausingsoftandharddecisionsin particular we will justify the
use of hard decisions for estimating the noegawice in (29).

Considerthe transmissiorof a sequencef uncorrelatedits a;, U {1,+1} througha
scalarchannelwith gain A, the outputof which is corruptedby an AWGN component;,
with varianceo®. The recaied signal can be written as

rp=Aay +np. (30)

Given initial estimatesAd, and &,, the channelgain and noise variancecan be

estimated with an iterag algorithm. Possible estimators can kgressed as

N-1

~ 1 ~

A+ = N Z rkdecA%LirkE, (31)
k=0
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52, . = ]%Nz—l rp—Ais 1deco%iirkaz, (32)
k=0

where i is the iteration number, L; = 2Ai/6i2 is the estimated channel reliability and
where deca (D) and decgy(D) are decision functions, given by either tanh(0J or sign(l). We
will consider four different estimators, denoted SS, SH, HS and HH, where thefirst Sor H
indicates whether soft or hard information, respectively, is used for gain estimation, and
the second S or H indicates whether soft or hard information, respectively, is used for
estimating noise variance. Note that the SH estimator corresponds to the SEM algorithm
applied to a scalar channel. The EM algorithm, on the other hand, cannot be expressed in

this framework. Its channel gain estimator can be expressed as in (31), with deca(D) =

tanhy (0. Its noise variance estimator, however, is given by

N-1
) 1 9 ~2 . .
6%y =% Y [In +Ai+1—2rkAi+1tanh%Lirk%}
k=0
1V
k=0

Now suppose the number of observations tends to infinity. In this case, we may use the
law of large numbersin (31), and (32). Thus, in this asymptotic case, the channel HH, SH,

SS and HS estimators may be written as

i+1

52 =E[

~ A 2
ro—Ais 1dec0%LirkE‘ } (35)

28



Equation (34) aso describes the gain estimator of the EM agorithm. The noise variance
estimator for the EM algorithm is obtained by applying the law of large numbersin (33),
yielding

. 2. 42
62,1 = Elry|1-Ais1 (36)

= AZ4+02- A2, 37)

For the HH estimator, it is shown in Appendix A that (34) and (35) may be written in

closed form as

0 2
Aji1=Al- ZQEAD)+ [oexp%A

|
0, (38)
2620

and

R ~2
6% .1 =A%+0%— Aj. 1, (39)
with JA% +6® = A 2 A. Therefore, for the HH estimator neither A; , 1 nor 62, ; depend
on the iteration number i. Unfortunately, if soft information is used, equation (34) cannot

be computed in closed form, so we must resort to numerical integration.

From (34), (35) and (37), we see that, as N tends to infinity, A, 4 1, and consequently
+1, is a function of just L;. The fact that both 4;,; and 0 , depend on a single
parameter allows for a graphical study of the iterative process. This anaysis is clearer if
we consider theratio a; = L;/ L instead of L;, where q; is the relative estimated channel
reliability, defined as the ratio between the estimated channel reliability at thei-th iteration
and the actual channel reliability L = 24 /0. For the graphica analysis, we view one

iteration of the SEM algorithm as a function whose input is o; and whose output is a;, ;.
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This function is plotted in a graph, aong with the line a;,; = a;. Since the agorithm
converges when a; = a;,1, the fixed points of the SEM algorithm are given by the
intersection of the two curves.

In Fig. 6 we plot a;,; versus g; for the five estimators, assuming A = /2 and an SNR
= A%2/0¢% = 2dB. We dso plot the line a;,; = a;, which allows for the graphical
determination of the behavior of the algorithms as follows. Initially, at the zero-th
iteration, a value a is given. The estimator then produces a value of a4, which can be
determined graphically as shown by the vertical arrow in Fig. 6 for the EM algorithm and
ag = 2.2. The value of a; for the next iteration can now be found by the vertical arrow in
Fig. 6, which connects the point (a,, ;) to the point (a4, a;). Now the value of a, can be

determined by a vertical line, not shown in Fig. 6, that connects the point (a4, aq) to the

Qi1

Fig. 6. Estimated relative channel reliability o; as afunction of its valuein the
previous iteration, a;_.
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EM cune. Theprocesshenrepeatslt is clearthattheiterationsstopwhenthe curve for a
givenalgorithmintersectgheline a;,; = a;. Thevaluesfor which this happensa™, arethe
fixed point of the algorithms and are metkwith %’ in Fig. 6.

Someinterestingobsenationscanbe madefrom Fig. 6. Considerfor instancethe HH
estimator For this estimatoywe seein Fig. 6 thatthevalueof a;,; doesnotdependn a;.
Thus, following the iteratve procedurewe seethat the HH algorithm corvergesin a
singleiteration,aswasexpectedfrom the analysisin (38) and(39). We canalsoseethat
theEM andthe SEM algorithmsgeneratea monotonesequence;. In otherwords,if these
algorithmsareinitialized with ana,, larger (smaller)thantheir fixed pointa® thena; will
monotonicallydecreasé€increase)until they corverge. On the otherhand,the a; for the
HS and SS algorithms eventually becomegreaterthan a®. After that happens they
alternate betweerelues that are greater than and smaller than

Using Fig. 6, we candeterminethe value of a after corvergencefor eachalgorithm.
Then, we can use (34) and (35) to determinethe expectedvaluesof A and 6 after
convergence.The resulting estimationerrors are listed in Tablel. As we can see,the
valuesin Tablel indicate that the best stratgy is the EM algorithm, and the SEM

estimator produces the second best results.

Table 1Expected ¥lues of Estimation Error After Ceargence

Estimator type | |A-A12(dB) | 16 —o12(dB)
SS -21.7 -10.5
SEM -25.3 -16.2
HH -19.1 -16.1
HS -19.1 -10.4
EM —00 —0
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Even though the EM algorithm is expected to produce exact estimates, its convergence
can be very slow. This can be seenin Fig. 7, where we plot the expected trgjectories of the
EM and the SEM algorithms, assuming that both algorithms are initialized using the HH
estimates. The HH estimates are a good candidate for initialization: they have reasonable
performance and converge in one iteration. As we can see in Fig. 7, the SEM estimator is
expected to converge in roughly 2 iterations, while the EM estimator is expected to
converge in roughly 7 iterations.

The performance of the estimators can be computed using the method described above
for other values of SNR, yielding the plots of the estimation errors for A and 62 versus
SNR shown in the dashed lines in Fig. 8 and Fig. 9, respectively. Again, we see that the
EM algorithm gives the best overal performance, followed by the SEM estimator. For

comparison, we also show simulation resultsin Fig. 8 and Fig. 9. These correspond to the

15 T T T T T

i1

11 / 4

0.9 1 1 1 1 1
0.9 1 11 12 13 1.4 15

Qi
Fig. 7. Tracking the trgjectories of the EM and the SEM estimators for a scalar
channel.
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Asymptotic error of gain estimates as afunction of SNR. Dashed lines
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simulation with 10° transmitted bits.
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Fig. 9. Asymptotic error of noise variance estimates as a function of SNR.
Dashed lines correspond to theoretical predictions, solid lines

correspond to a simulation with 10° transmitted bits.
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solid lines, and were obtained using 108 transmitted bits, and the channel estimators were
rununtil 1L; — L; _1 | <10® or the number of iterations exceeded 20. Aswe can see, the
theoretical curves predict the performance of the estimators very closely, except for the
EM algorithm. An explanation for the difference between the theoretical and simulation

curves for the EM algorithm could not be found.

3.3 The Impact of the Estimated Noise Variance

It is interesting to note that while substituting the actual values of kA or a for their
estimates will always improve the performance of the iterative algorithm, the same is not
true for o. Indeed, substituting o for 6 will often result in performance degradation.
Intuitively, one can think of 6 as playing two roles: in addition to measuring o, it aso acts

as a measure of reliability in the channel estimate /. Consider a decomposition of the

channel output:

rp = ilT a, +(h - h Yay, + ny,. (40)
Theterm (k- h )Tay, represents the contribution to r,, from the estimation error. By using
h to model the channel in the BCJR agorithm, we are in effect lumping the estimation
error with the noise. Combining the two results in an effective noise sequence with
variance larger than o2. It is thus appropriate that & should exceed o whenever A differs
from h. Alternatively, it stands to reason that an unreliable channel estimate should
translate to an unreliable (i.e., with small magnitude) symbol estimate, regardless of how
well izT a;, matches r,. Using a large value of 6 in the BCJIR equalizer ensures that its

output will have a small magnitude. Fortunately, the noise variance estimate produced by

(29) measures the energy of both the second and the third term in (40). If & is a poor



channelestimate,a will alsobe a poor estimatefor @, and corvolving @ and A will

produce a poor match fer so that (29) will produce a z& estimated noisexiance.

3.4 Simulation Results

In section3.2, we saw thatthe EM algorithm outperformsthe SEM algorithmfor a
scalarchannelandasthe numberof obserationsN tendsto infinity. In this section,we
presensimulationresultsshaving thatthe performancealegradationincurredby ignoring
the matrix R, in the EM algorithm is not significantfor finite N and a channelthat
introduced SI. We usedthe simulationscenariocof [22]. The channels givenby k = [0.5
0.7 0.5], andthe noisevarianceis chosenso that SNR = 11 dB, whereSNR = ||h||2/02.

We initialized the estimates fy = [0, 6, 01, and

-2 1l <N-1 2

Thus,we have initialized our estimateof the SNRto 0 dB, andthe valuesof k¢ and &,

agreewith the enegy of the receved signal.In Fig. 10, we showv the estimatesof the

0.8 SEM T T T T T T T T 0.9 T T T T T T T T
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Fig. 10. Performanceomparisonchannebndnoisestandardleviationestimates
as a function of iteration for EM (light solid) and simplified EM (solid)
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channel coefficients and the noise standard deviation as a function of iteration for the EM
and the SEM agorithms, averaged over 100 independent blocks of 256 BPSK symbols.
As expected, the SEM algorithm yields a larger estimation error than the EM algorithm,
though the performance loss is not significant. As in the scalar channel case, the SEM

algorithm converges faster than EM in this experiment.

In this chapter, we only ssmulated the performance of the SEM agorithm for one IS
channel. In Chapter 4, we introduce a modification to the SEM agorithm that greatly

improves its convergence. More simulations will be conducted then.

3.5 Summary

In this section, we proposed the SEM algorithm, an iterative blind channel estimator
that is less complex than the EM agorithm in two ways. it does not require the
computation and inversion of the autocorrelation matrix, and it is not intrinsically tied to
the BCIR equalizer. We presented an asymptotic analysis of different estimators,
including the SEM and EM algorithms, for a scaar channel and as the number of
observations tends to infinity. We showed that the EM algorithm provides the best
estimates in this case, followed by the SEM algorithm. We also showed that for a scalar
channel the SEM algorithm is expected to converge faster than the EM algorithm. For a
channel that introduces ISI, smulation results indicate that the performance loss of the
SEM is not significant when compared to the EM algorithm, and that the SEM estimates

converge faster than the EM estimates.
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CHAPTER 4

The Extended-Window Algorithm (EW)

As we discussed in section 2.3, the EM agorithm generates a sequence of estimates
with nondecreasing likelihood. Thus, it is prone to misconvergence, defined in the present
context as the convergence to a nonglobal local maximum of the likelihood function. The
traditional approach to this problem is either to completely ignore misconvergence or to
assume the availability of agood initialization. For instance, the simulation in the previous
section involved some cheating: the channel estimates were initialized to an impulse at the
center tap, which happens to match the main tap of the channel. However, there is no
reason for using such initialization other than the fact that we know that the center tap of
the actual channel is dominant, a knowledge that obviously would not be available in a
real-world blind application. In this chapter, we show that the estimates after

misconvergence may have a structure that allows some local maximato be escaped.

4.1 A Study of Misconvergence

To study an example of misconvergence, consider using the SEM agorithm to identify
the maximum-phase channel k = [1 2 3 4 517 at SNR = 24 dB, with a BPSK input
sequence. With the channel estimates being initialized to Ao = [1 0 0 0 0]T and Gy =1,

after 20 iterations the SEM algorithm converged to afixed point of
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h =[2.1785 3.0727 4.1076 5.0919 0.1197]T (42)
The algorithm thus fails. But the estimated channel is roughly a shifted version of A. A
possible explanation for this behavior is that, if the channel is not minimum phase, then it
introduces some delay o that cannot be compensated for at the symbol estimator of Fig. 5.
Thus, the soft symbol estimate L, produced by the symbol estimator may in fact be related
to a delayed symbol a;, _5, i.€, Ly, =log Pr(a;, _5=+ 11r)/Pr(a; _5=-11 r). Therefore,
when using equation (28) to estimate 4,,, we may be estimating 4, , 5 instead. In this
example, the delay is 1. Apart from this delay, the algorithm seemsto perform well, and in

fact if it were to also compute

E[rktanhDLk b ID} , (43)

it would also be able to accurately estimate h,. Hence, to estimate all the channel
coefficients in this example, we must compute equation (28) for more vaues than

originaly suggested by the EM algorithm.

For a general channel, we have observed that, after convergence, the sign of the LLR
produced by the BCJR algorithm isrelated to the actual symbol a;, by sign(L;) = a, _ 5, for
some integer delay o satisfying 181 < p. Even though a proof of this bound for the delay
could not be obtained, there is an intuitive explanation for this behavior. Let d =
argmaxg ;<! h;l. If the actual channel were known to the symbol estimator, then ry, is
the channel output that has the largest impact on the decision made on a, _ ;. Now assume
that the channel estimator passes k to the symbol estimator, and let d = argmaxq <,
| A j 1. With this channel estimate, the symbol estimator will be such that r;, is the channel

output that has the largest impact on the decision made on a, 5. If this estimate is

k-
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reasonablethena, - = a;_g4, sincethey are both mostly influencedby r;. In other
words, after corvergence, sign(Ly) = a, _ ;5 Now let & = d — d. Sinced, d O
{0, ... u}, we indeed hae 151 <.

To illustrate the effects of the delayin channelestimation,considerfor instancethe
channelk = [1 ¢ € € €]T for somesmalle, andassumehatthe channelestimatompassesh
=000 0 11T andagiven 62 to the symbolestimatorWith thesevalues the outputof the
symbolestimatomwould essentiallype L, = 2r, , 4/6 2. But we know that, for the channel

h, sign(ry,) = ay, andhencesign(L;) = a;, , 4. Thus,if we compute(28)forn =4, ... 0,as

originally suggested, we will ner get a chance to compute, for instance,

N N
hi=x% S maps =y 3 ritanh(@y_s/2) (44)
E=1 k=1

Likewise,if & = [e € € € 1], andthe channelestimatompassed: =[1 0 0 0 0]T andagiven
62 to the symbol estimatoy thenwe would have L, = 2r,,/62, sothatsign(L;) = aj, _ 4.
Thus,if we compute(28) for thegivenwindow n = 4, ... 0, we would never getachance
to estimateh;. For that, we would have to useL, , 5. Even thoughtheseare extreme

examples, the illustrate well the décts of the delay in the iteradi process.

4.2 The EW Channel Estimator

In light of the discussionaborve, it is clearthat if we areto correctly estimatethe
channelwe cannotrestrictthe computatiorof (28) to thewindow n = —y, ... 0. Thus,we
proposean extended window EM (EW) algorithm. To determinehow muchthe window

must be extended,we again considerthe extreme cases.When sign(L;) = a;,_, to
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estimate & and h,, we need to compute (28) for n = —u and n = 0, respectively. Likewise,
when sign(Ly) = ay, .. ,, to estimate h, and &, we need to compute (28) forn = pandn =

24, respectively. Thus, we propose to compute an auxiliary vector g as

DLk—n

AN 0 __
gn—Nzkzl[rktanhD 5 D},forn_ U, ..., 2. (45)

Note that only p+1 adjacent elements of g are expected to be non-zero. With that in mind,
we propose that the channel estimates & be the p+1 adjacent elements of g with highest

energy.

4.2.1 Delay and Noise Variance Estimator

Let b = [g_5 ... g_5+u]T be the portion of g with largest energy. Note that after
convergence we expect that & = h, i.e, g_s = hy. But comparing (25) and (45), we note

that thisis equivalent to saying that

aj, = tanh D@D. (46)

In other words, by choosing & to be the current channel estimate we are inherently
assuming that the estimated sequence is a delayed version of the transmitted one, where
the delay is . This delay should be taken into account in the estimation of the noise
variance. With that in mind, we propose to estimate o2 using a modified version of (29),

namely
2

N

~2 1 AT =2

O-i+1=]v Z ‘rk—ak_6hi+1 . (47)
k=1

The EW agorithm is summarized in the following pseudocode:
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S , - ~2
initialize channel estimates ho and J,.

i = 0.
repeat
use current channel estimates to conpute synbol estinmates
Ly, for k =0, ... N1
Conpute g,, n= —{, ...24, as in (45).
Let A; = [0_gq» - 9.4 + H]T be the p+l consecutive entries

of g with highest energy.
Updat e the noi se variance estinate according to (47).
i =i + 1.
until a stop criterion is met

4.3 Simulation Results

In this section, we present some simulation results comparing the performance of the
EW agorithm to the EM algorithm and to trained channel estimation algorithms. In al the
simulations, we have used a BCJR equalizer with the EW algorithm, to allow for a fair
comparison with the EM algorithm. The results presented in this section all correct for the
aforementioned delaysin the channel estimation process. In other words, when computing
estimation error or averaging channel estimates, the estimates were shifted to best match
the actual channel. Note that this does not affect the channel estimates in the iterative
procedure.

As afirst test of the extended-window algorithm, we simulated the transmission of K =
600 bits over the channel h = [-0.2287, 0.3964, 0.7623, 0.3964, 0.2287] T from [26],
whose frequency response is shown in Fig. 11. We have used SNR = ||h||2/o2 =9dB. To
stress the fact that the proposed algorithm is not sensitive to initia conditions, we

initidlized A randomly using ﬁ(o) = ua(o)/llull, where u ~ A(0,I) and 6(20) =

Z;V__;"Z /2N. (This implies an initial estimated SNR of 0 dB, with values consistent

with the received energy.) In Fig. 12, we show the convergence behavior of the SEM
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[H(w)[? (dB)

Fig. 11. Frequency response of h = [-0.2287, 0.3964, 0.7623, 0.3964, —0.2287].

channel estimates, averaged over 200 independent runs of this experiment. Only the
convergence of A, k1 and kg is shown; the behavior of A3 and A4 is similar to that of
he and hg, respectively, but we show only those with worse convergence. The shaded
regions around the channel estimates correspond to plus and minus one standard

deviation. For comparison, we show the average behavior of the EM estimatesin Fig. 13.

0 2 4 6 8 10 12 14 16 18 20
ITERATION

Fig. 12. Estimates of h = [-0.2287, 0.3964, 0.7623, 0.3964, —0.2287], produced
by the extended-window algorithm.
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ITERATION

Fig. 13. EM estimates of h = [-0.2287, 0.3964, 0.7623, 0.3964, —0.2287].

Unlike the good performance of the extended window algorithm, the EM agorithm even
fails to converge in the mean to the correct estimates, especially A . This happens because
the EM algorithm gets trapped in local maxima of the likelihood function [40], while the
extended-window avoids many of these local maxima. The better convergence behavior of
the EW algorithm is even more clear in Fig. 14, where we show the noise variance

estimates.

0.9 T T T T T T T T T

0 2 4 6 8 10 12 14 16 18 20
ITERATION

Fig. 14. Estimates of o2, produced by the extended-window algorithm.
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The performance of the EW estimator was also compared to a trained estimator that
estimates the channel coefficients using equation (28) with the actual transmitted symbol
ay, _, substituting the estimate &,(ei)_ ., - Thistrained estimation technique, known as channel
probing, is not the trained MM SE estimator of (17) and (18). For comparison purposes, we
also show the performance of the EM agorithm and the trained MMSE estimator. We
have smulated the transmission of 200 blocks of K = 600 bits over the channel h = [-
0.2287, 0.3964, 0.7623, 0.3964, -0.2287] T. For each block, the channel estimates for the
EM and EW algorithms were initialized with the random estimates used in the previous
experiment.

In Fig. 15 we show the estimation error as a function of the SNR for the trained
estimates and for the EM and EW estimates after 20 iterations. In Fig. 16, we show the
resulting BER. Again we see that the EW algorithm performs better than the EM

algorithm. It is interesting to notice that the performance of the EW algorithm approaches

that of its trained counterpart, the channel probing estimator. One would thus expect the
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Channel Probing
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Fig. 15. Estimation error for the channel probing, MM SE, EM and EW estimates
after 20 iterations.
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Fig. 16. Bit errorrateusingthetrained,EM andEW estimatesfter20 iterations.

performanceof the EM algorithmto approachthat of its trainedcounterpartthe MMSE
algorithm.However, aswe canseefrom Fig. 15 andFig. 16, the EM algorithmperforms
worsethanchannelprobing,which is in turn worsethanthe MMSE estimator Finally, it
should be pointed out that even thoughthe channelestimatesprovided by the MMSE
algorithm are better than those of the channelprobing, the BER of both estimatesis
similar. In otherwords,the channelprobingestimatesare“good enough”,andthe added
complity of the MMSE estimatordoesnot have muchimpacton the BER performance
in the SNR range considered here.

To further supportthe claim that the proposedalgorithm avoids most of the local
maximaof thelik elihoodfunctionthattrapthe EM algorithm,we ranbothalgorithmson

1,000 randomchannelf memoryu = 4, generate@sh = u/|u| , whereu ~ A(0, I). The

N-1 9

Lok 2N andhg = (0,0, G,, 0, 0)T, i.e, thecenter

estimatesvereinitializedto c‘rg =5

tap ofhy is initialized tog, . We usedSNR = 18 dB, and blocks 0K = 1000 bits.
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Fig. 17. WER for the EW and the EM algorithms for an ensemble of 1,000
random channels.
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In Fig. 17 we show the word error rate (WER) (percentage of blocks detected with
errors) of the EW and EM algorithms versus iteration. It is again clear that the EW
algorithm has a better performance than the EM agorithm. This can aso be seen in
Fig. 18, where we show histograms of the estimation errors (in dB) for the channel

probing, EW, and EM estimates, computed after 40 iterations. We see that while only 3%

180 T T T T T 4T T T T T
™ —=— EW
160 (X —o— EM i

- A - Channel Probing

Number of Occurrences

~ 2
In-2]" @B)

Fig. 18. Histograms of estimation errors for the EW and the EM algorithms over
an ensemble of 1,000 random channels.
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of the EW estimates have an error larger than -16 dB, 35% of the EM estimates have an
error larger than -16 dB. In fact, the histogram for the EW algorithm is very similar to that
of the channel probing estimates, which again shows the good convergence properties of
the EW agorithm.

It is also interesting to note in Fig. 18 that the EM estimates have a bimodal behavior:
the estimation errors produced by the EM agorithm are grouped around -11 dB and -43
dB. These groups are respectively better than and worse than the channel probing
estimates. This bimodal behavior can be explained by the fact that the EM agorithm
converges to inaccurate estimates very often, leading to large estimation errors. On the
other hand, when the EM algorithm converges to accurate estimates, then the EM
estimates are close to the MMSE estimates, which are better than those produced by
channel probing. However, as we previously observed, the better quality of the channel
estimates has no significant impact on the BER performance: the equalizer based on the

channel probing estimates detected all transmitted sequences correctly.

4.4 Summary

In this chapter, we studied some aspects of the convergence of the EM and the SEM
algorithm. We showed that the EM and SEM estimates after misconvergence may be a
shifted version of the channel. With that in mind, we proposed the EW algorithm, a
modification of the SEM algorithm that exploits the structure of the estimates after
misconvergence to greatly decrease the probability of misconvergence. We showed via
simulations that the EW agorithm has better convergence properties than the EM

algorithm when the initidlization and/or the channel is random, yielding a better
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performance both in terms of BER and channel estimation error. In simulations, we also
compared the performance of the EW agorithm to a system that estimates the channel
using channel probing and knowledge of the transmitted symbols. We showed that the
performance gap between the EW system and the one with training is surprisingly small.
It should be pointed out that the trained estimators used in this section are unrealistic,
since they assume knowledge of the whole transmitted sequence. Therefore, the gap

between the EW and trained estimates should be even smaller in a practical system.
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CHAPTER 5

The Soft-Feedback Equalizer

In section 2.3, the EM algorithm was shown to have three problems: sSlow
convergence, misconvergence and high computational complexity, stemming from need to
compute and invert the a posteriori sample autocorrelation matrix R, defined in (19) and
from the use of the BCJR equalizer. In chapter 3, we proposed the SEM algorithm, which
converges faster than the EM algorithm and does not require matrix inversion. In
chapter 4, we proposed the EW algorithm, which decreases the probability of
misconvergence. In this chapter, we will address the remaining problem of the EM
algorithm: the complexity that results from using the BCJR algorithm for estimating the
transmitted symbol.

The SEM and EW algorithms are not intrinsically tied to the BCJR equalizer, and may
be used with any equalizer that produces soft symbol information. With that in mind, in
this chapter we propose the soft decision feedback equalizer with priors (SFE), a low
complexity alternative to the BCJR algorithm that retains many of its attractive features. In
particular, it outputs soft information in the form of an estimate of the a posteriori LLR. It
also exploitsa priori information on the transmitted symbols, intheform a priori LLR )\},;.
Thus, it is well suited for applications such as turbo equalization (where the a priori

probabilities are provided by the channel decoder), semi-blind systems (in which the a
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priori probabilities stem from the fact that some symbols are known), and iterative
equalization (in which the a priori probabilities come from a previous iteration of the
equalizer).

The SFE will be derived in a general context, in which we assume the availability of
channel estimates and a priori probabilities. That way, the SFE is not tied to a single

application, such asiterative channel estimation or turbo equalization.

5.1 Previous Work on Interference Cancellation

The reduced-complexity equalization techniques proposed in [30-35], which are based
on linear filters and exploit a priori information, have the structure shown in Fig. 19. In
thisfigure, the received signa isfiltered by alinear filter f, whose output contains residual
ISI. Theapriori information is used to estimate and cancel thisresidual 1Sl.

Interference cancellation (IC) proceeds as follows. Assume that, at time k&, the
equalizer seeks to estimate a;,. The a priori information is used to produce soft estimates

{a;+ 3} of theinterfering symbols{a;  }, according to:
a; = Ela I\l = tanh(\}/2) . (48)

If these estimates are correct, their effect on the output of f can be estimated and cancelled

through linear filtering and subtraction. Specifically, as shown in Fig. 19, an interference

T 2y A
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)\P ~
k / ap J

Fig. 19. Interference canceller with a priori information.
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cancellerfeedsthe soft decisionsthrough a filter g, whoseresponses relatedto the
residuallSI at the outputof f. Sincethe equalizeroutputwill be usedto estimates, the
influence of @, on the equalizeroutput should not be cancelled.Hence, the zero-th
coeficient of g is constrainedo be zero. The equalizersof [30-35] chooseg underthe

assumption that its input symbol estimates are correct, yiedgiad ;2 _; whenk £ 0.

Sincethezero-thtapof g is zerq the equalizeroutputattime £, z;, is notafunction of

)\7;. Thus, z, canonly be usedto produceextrinsic information, which can be done by
writing the equalizer output as

zp =Aay + g, (49)

whereA = Elz;a;] = 3 hf-;, andv,, includesthe effect of channelnoiseandresiduallSI.

Note that, from this definition, v, is independenbf a;. The computationof the extrinsic

LLR A from z;, is easywhenu,, is approximatedoy a Gaussiarrandomvariablewith

varianceoi . In this case, we find that

M, = 24z,/0°. (50)
The full LLR at the equalizer output is thewen byL, = A\, + )\Z.

The equalizersproposedin [30] and [31], which we refer to as decision-aided
equalizers(DAE), choosef under the assumptionthat the soft decisionsof (48) are
correct,which leadsto the matched-filtersolutionf;, = 4 . In the equalizerproposedn
[32,34] andin oneof thosein [35], fis an MMSE-LE. This equalizerdependsn )\Z and
must be recomputedevery time instantk, resultingin a time-varying equalizer(TVE)
whosecomputationatompleity is quadratian the numberof equalizercoeficients.Also

proposedin [32,35] are approximationsthat yield time-invariant filters £ and g. In
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particular, the switched-equalizer (SE) strategy proposed in [35] chooses f as either a

traditional MMSE equalizer or a matched filter (MF). A simple criterion to choose

between these two equalizers is proposed that depends on the quality of the a priori

information. In all cases[30-35], the cancellation filter g is designed under the assumption

that itsinput symbol estimates are correct, namely g, = > ;hf, _; for k #0.

5.2 The Soft-Feedback Equalizer

We now propose the SFE, a soft-output equalization scheme that shares many

similarities with the interference-cancellation schemes of [30-35]; however, our approach

differsin two substantial ways.

At time &, when computing z;, the previous equalizer outputs {A, _;: j > 0} are
known. With these values, we may compute the full LLR L, _; = )\Z RV
which provides a better estimate of a;, _; than )\Z _; done Thus, instead of using
aj,_; to cancel interference, we propose to use a;,_; = Elay, _;1L; _;] for j > 0.
Thisissimilar in spirit to the principle behind a DFE. A DFE-based system is also
proposed in [35]. However, the system of [35] feeds back hard decisions on the
equalizer output, without combining them with the a priori information, and it per-
forms worse than the systems without feedback described in section 5.1. In [20], a
DFE was proposed to be used with a priori information. However, it does not use
the a priori information to cancel post-cursor ISI, and it computes the DFE coeffi-

cients assuming correct decisions.

Asin [32-35], instead of trying to cancel al the interference, we pass a, and a,,

through linear filters whose coefficients, along with f, are computed to minimize
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the MSE E[ | z;, — a;, 1 2]. However, following [39,45], we use a Gaussian approxi-
mation to X; and A, that leads to time-invariant SFE coefficients, and hence to a
per-symbol computational complexity that is proportional to the number of equal-

izer coefficients, as opposed to the quadratic per-symbol complexity of the TVE.

Applying the above two changes to Fig. 19 leads to the proposed SFE structure shown
in Fig. 20, where the filters g, and g, are strictly anticausal and strictly causal,
respectively, and the filters f, g; and g5 are chosen to minimize the MSE. The thicker line

in the feedback loop represents the only actual change from Fig. 19.

5.2.1 The SFE Coefficients

L et the SFE output z;, be written as
2o, =fry-g1a; —g5a, (51)

where f'= Lf s ---sz]T’ re=lrpeys rk—Mz]Ta g1=l8g y > ..811%, go=1gy,
denotes transpose, and M, and M, determine the lengths of the filters. Now, assume that

Elaja;] =Ela,aj] = Ela,a ;1= 0whenk # . This seemsreasonable, since a;, and @, are

— > f I
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Fig. 20. The proposed SFE equalizer. The thicker line in the feedback loop
represents the only actual change from Fig. 19.
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approximately equal to a, and the transmitted symbols are uncorrelated. Then, as shown

in Appendix B, the values of f, g; and g, that minimize E[ | z, — a;, | 2] are given by

2 2
a a
f=HHAT - E_i HH] - E_Z H,H, + o’k (52)
g1=(ay/E) H{f (53)
g2 = (ay/Eg) Hyf, (54)

where H isthe M x (M + p) channel convolution matrix:

hohy .hy 0 0 .. 0

Ho |0 hohy By 00 (55)
0 o hghy Ry
M=M;+M,+1,ad
E,=E[la, 1%, (56)
Ey,=Ella, 1%, (57)
o1 = E[a, az), (58)
oy = El@, az]. (59)

The vector h is the 0-th column of H, where the columns of H are numbered as H =
[h—Ml’ hM2+u]. Also, H; = [h_Ml, ..hylandHy = [hq, ... hM2+u]' The constants
A and 05 , needed in (50) to compute the LLR A, from the equalizer output, are shown in

Appendix B to begivenby A = fTh, and 03 =A (1-A). Thus,

M, =22,/ (1= fThy). (60)



Note that, from the definitions of @, and a,, at time k& we only attempt to cancel the
interference from the M future symbols and the M5, + p past symbols. However,

r, =Ha}, + ny, (61)
whereny = [ny,, py o ny gy 1T @0d @y = lag 3y, - @y, _py, 17 Thus, the output of
thelinear filter f suffersthe interference of a;, _; forj = -M;, ... My + p. In other words, at
time % the output of £ has residual interference from the M, future symbols and the
M, + p past symbols. This explains the index range in the definition of @, and @, . Also,
note that g, and g4 are proportional to the strictly causal and anticausal portions of Y ;,f;, _
;» Where the constants of proportionality depend on the quality of a, and @, through

0‘1/E1 and (12/E2.

5.2.2 Computing the Expected Values

Exploiting symmetries, it is not hard to see from (56)-(59) that E, a{, E9 and ay may
be computed by conditioning on a, =1. In other words, E;=E[la, 12la; = 1],
E,=Ella, 1%la; = 11, a; = E[a, laj, = 1], and ay = E[a,, |a;, = 11.
Now, assume that )\IZ is computed from an equivalent AWGN channel with output
I, = aj, + wy, (62)
where w;, is AWGN with variance oi, assumed to be independent of the transmitted
sequence, the actual channel noise and the equalizer output at time % [45]. Assuming a
BPSK alphabet, this means that )\’,'; =Yp lg, Wherey, = 2/03) is proportional to the SNR of

the equivalent channel that generates X, Then, conditioning on ay, = 1, X, ~ AQy,,, 2y,), SO

ap = Wilyp), (63)

Eq = Walyp), (64)
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where
P1(y) = Eltanh(u/2)], u ~ Ay, 2y), (65)

We(y) = Eltanh?w/2)], u ~ ALY, 2y). (66)
Unfortunately, there are no closed-form formulas for g4(y) and yy(y). However, these are
well-behaved functions that may be tabulated or computed by simple numerical

algorithms.

Similarly, note that L, = )\‘t,’e + A,. Now, consider the Gaussian approximation to A, in
(49) and (50), and let y, = 2A2/of be a parameter that is proportiona to the SNR of the
equivalent channel that generates A,. Then,

Ly = (Yp + Vo) ap + YpWp, + Vel (67)
so that, conditioning on a; =1, Lj ~ Ay, + Ye, 2 (Y, + Ye)). Thus, using the Gaussian
assumptions, E, and a4 are given by

ag =Py, + Vo) (68)
Eo = Yoy, + Vo) (69)
To compute E4, a4, E9 and ag, the values of y, and y, need to be estimated. Because

E[IN3121 = y3 +2Y,, theML estimate of y, is

A/l NZk 0 | (70)

To determine y,, we note that, as shown in Appendix B, A = fTh, and o> = A (1-A).

Thus, sincey, = 242/c>, we have that

Yo=2fTho/(1—fThy). (7)
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Note that we need y, to compute E, and a,, but we need E, and a, to compute y,. To

find both simultaneously, we propose that, given an initial value for y,, we compute:

2 2
a gily, +v,)
= (T - g HG - R S HoH, + %D A (72)
p e
Ye=2fTho/(1—fThy). (73)

iteratively, until a stop criterion is met. The converge behavior of this iterative procedure
can be studied with the same techniques used in section 3.2 to analyze the scalar-channel
estimator. Indeed, for a fixed channel, noise variance and y,, the iterative procedure may
be seen as a mapping from the value of v, at the i-th iteration, v/, to the value of y, at the
i+1-th iteration, y}*1. With that in mind, consider Fig. 21, where we plot y/*! as a function
of y¢ for y, = 0, h = [0.227 0.46 0.688 0.46 0.227], M, = 10, My = 5, and SNR = 10 dB.
Also shown in Fig. 21 is the line yi*! = yZ. Since the iterative procedure converges when

v+l = yi, Fig. 21 suggests the existence of a single fixed-point for this particular example,

10 T T T T T T T T T

i+1
Ye
[6;]

Fig. 21. Graphical analysis of the convergence of (72), (73): estimated value of
yi+! as afunction of its value at the previous iteration, y.
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marked by a x. Furthermorethe dynamicbehaior of the iterative procedurewheny, is
initialized to zero, is illustratedin Fig. 21 by the dottedarrowns. As seenin Fig. 21, the
algorithmis expectedto corverge after 3 iterationsin this case.We have obsered the

same &st conergence and unimodal behar in all scenarios we ka studied.

To summarize, the SFE cdiefents are computed as in the foliog pseudocode:
Estimate y, using (70);
Estimate y, using the iterative procedure in (72) and (73);

Conpute E;, ay, Egand ay using (63), (64), (68), (69);
Conpute the SFE coefficients using (52), (53), (54).

5.2.3 Special Cases and Approximations

Thevaluesof y, andy, areproportionalto the SNR of the equivalentAWGN channels
thatgeneraté\i andh, respectiely, andhencereflectthequality of thesechannelsBased
on this obsenation, someinterestingconclusionsmay be dravn from a study of the
behaior of Y(y), wi(y) / Ys(y) and qJ%(y) / Wo(y), which areplottedin Fig. 22 asa function

of y.

10t T T T
Wy(y)

Py(y)

102 101 100 10t 102

Fig. 22. The behaior of y,(y), Wy(y)/W,(y), andy? (/).
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Consider, for instance, the case in which y, or y, tends to zero. It can be shown that, as
y tends to zero, the ratio Y(y) / Wy(y) tends to infinity, as suggested in Fig. 22. From
equations (53) and (54), thisimplies that the coefficients of the interference cancellers go
to infinity as the reliability of their inputs goes to zero. Hence, it seems that the less
reliable the symbol estimates, the more we try to cancel their interference. However, this
observation is not true. In fact, under the Gaussian assumption it is not hard to show that
the outputs of the interference cancellers are zero-mean random variables with variance
@2 /Ep[HT " and (o3 / Ep|HEF” . 1t is dlso possible to show that wi(y) / wy(y) tends
to zero as the reliability y tends to zero, as suggested in Fig. 22. Thus, although the filter
coefficients grow large, the output of the interference canceller goes to zero in the mean-
square sense, and in fact no interference cancellation is done.

Based on Fig. 22, the analysis above, and a careful inspection of (52) — (54), it can be

shown that the SFE reduces to well-known equalizers for certain values of v, and y,.

* Inthelimit asy, and y, grow small, we have aready shown that no IC is per-
formed. Furthermore, since a? /E; - 0asy, - 0 and ag /Ey -~ 0asy, -0, f
reduces to a traditional MM SE-LE. Therefore, in this case, the SFE reduces to a
conventional linear MM SE equalizer. Thisisintuitively pleasing, since small val-
ues of y, and y, suggest low levels of reliability, and in this case the receiver is bet-

ter off not attempting any form of interference cancellation.

* Inthelimitasy, - 0 andy, - «, the SFE reduces to a conventional MM SE-DFE.
Thisisintuitive, since small y, implies unreliable priors, and hence no cancellation

of precursor 1Sl should be performed. Furthermore, largey, implies reliable equal -
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izer outputs, in which case postcursor interference can be effectively cancelled

using decision-feedback.

* Inthelimitasy, - «, the SFE reduces to atraditional 1Sl canceller. Thisis intui-
tive because when y, is large, the equalizer has access to reliable estimates for all
interfering symbols. When the interfering symbols are known, the interference

canceller is known to be optimal.

The plot of Y(y) / We(y) in Fig. 22 also indicates that we could replacea; / E; and aq /
E, by 1, an approximation that is clearly accurate for y> 0.1. To analyze the effects of
this approximation for y< 0.1, we observe that the feedforward filter £, as well as the
variance of the output of the interference cancellers, depend on o / E; and a3 / Ey. In
other words, we have to analyze the impact of the approximation on a? / E; and o3 / E,.
However, as suggested in Fig. 22, the difference between y;(y) and w%(y) / Wo(y) tends to
zero asy tendsto zero. Thus, a / E; and a3 / E, are close to oy and a,, respectively, even
for unreliable channels. Therefore, approximating o, /E; and ay/E, by 1 does not

greatly affect the equalizer output. The resulting approximate filter coefficients are thus

computed as
f=HHT - o; HH] - 0y HoH) + 621)? A, (74)
T
g1 =H1f, (79)
T
g2=Hsf. (76)

It isinteresting to notice that, under this approximation, the coefficients of the interference
cancellers g; and g4 are those that would be obtained assuming correct decisions. Thus,

the amount of interference cancellation to be performed by the equalizer is controlled
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mostly by the amplitude of the soft information, not by the interference cancellation

coefficients.

5.3 Performance Analysis

In this section, we present an analysis of the performance of the SFE algorithm, using
computer simulations and theoretical results based on the Gaussian approximation. We
also compare the SFE to atraditional DFE.

We begin by showing the validity of the Gaussian approximation. To that end, in
Fig. 23 we show the estimated probability density function (pdf) of the SFE output, A,
based on the transmission of 32,000 bits through the channel A = [0.23 0.42 0.52 0.52
0.42 0.23] at SNR = 20 dB. The equalizer has M, = 20, M, = 15, and we do not assume
the presence of a priori information, i.e., we assume )\’; =0 for all &. In thisfigure, we aso
show the pdf of the LLR at the output of a Gaussian channel with SNR = fTh/ (1 -

fThy), computed using the SFE parameters. As we can see, both pdfs are similar.

0.05

0.04 |-

0.03 |-

0.02

0.01

0 1 1 1 1 1

-30 -20 -10 0 10 20 30

Fig. 23. Estimated pdf of the SFE output, compared to the pdf of the LLR of an
AWGN channel.
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We may use the fact that the SFE output is similar to the LLR of an AWGN channel to
predict the performance of the equalizer. In fact, since the SNR of the equivaent AWGN

channel isfTh/ (1 - fThy), the BER at the SFE output should be close to

T
5)_f ko F
- olJ

To show the accuracy of this computation, we simulate the transmission of 107 bits
through the channel & =[0.227 0.46 0.688 0.46 0.227], using equalizerswith M = 10, Mo
= 5. In Fig. 24, we show the BER performance of the SFE computed through simulations
and using (77). As we can see, the theoretical computation in (77) gives a reasonable
prediction of the performance of the SFE, especialy for low SNR. However, we can also

see that equation (77) is normally too optimistic.

A

BER

1073

I T T S N | I W ini

—=— SFE (Simulation)
— SFE (Theoretical)
—o— DFE

10%

105 1 1 1 1 1
10 12 14 16 18 20 22
SNR (dB)

o
N
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o
©

Fig. 24. BER (theoretical and simulation) of an SFE with no a priori information.
The BER of a DFE is aso shown.
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In Fig. 24, we also show the BER performance of a DFE. It isinteresting to notice that
as the SNR increases the performance of the DFE and the SFE become similar. This
agrees with the previous analysis, which predicted that the SFE becomes a DFE as the
SNR tendsto infinity. It is also interesting to notice that the SFE outperforms the DFE for
SNR lessthan 8 dB, while the DFE is better than the SFE for SNR greater than 8 dB. This
indicates that, for this channel, there is an SNR threshold above which soft information
becomes too tentative, and the equalizer is better off using hard decisions. A similar
behavior was observed for other channels. In fact, our simulations indicate that if the SNR
at the SFE output, fTho/ (1 —fThy), is greater than one, then the DFE performs better
than the SFE. Unfortunately, a theoretical computation of this SNR threshold could not be

determined for ageneral channel.

5.4 Summary

In this chapter, we proposed the SFE, a low-complexity soft-output equalizer that
exploits a priori information about the transmitted symbols to perform soft interference
cancellation. The SFE achieves a compromise between linear equalization, decision
feedback equalization and interference cancellation by choosing the equalizer coefficients
according to the quality of the priors and of the equalizer output. Since the SFE exploits a
priori information, it may replace the BCJR equalizer in applications.

The SFE differs from similar structures [30-35] in two ways. First, it successfully uses
soft feedback of the equalizer outputsto improve interference cancellation. In contrast, the

decision-feedback structure proposed in [35] performs worse than its linear counterpart.
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Also, by assuming a statistical model for the priors, we obtain a time-invariant, linear
complexity equalizer, as opposed to the quadratic complexity of the MMSE structures in
[32-35].

We showed that the SFE collapses to well-known equalizers in limiting cases where
the a priori information and the equalizer output are very reliable or very unreliable. We
conducted simulations demonstrating the validity of the Gaussian approximation and
comparing the performance of the SFE to a DFE. In these simulations, we showed that the
SFE outperforms the DFE for low SNR. For high SNR, the performance of both equalizers
issimilar. For the intermediate SNR range, the DFE outperforms the SFE, suggesting that
soft information may be too tentative for this SNR range, and better results are achieved
with hard information. This behavior was also observed in other simulations we conducted
for different channels, but we could not devise a general strategy to determine when hard

information yields better results than soft information.



CHAPTER 6

Turbo Equalization with the SFE

Consider the turbo equalizer shown in Fig. 25, which is repeated here from
section 2.2. As discussed in section 2.2, the equalizer in a turbo equalizer computes the
LLR of the transmitted symbols, L¢, based on the received samples r and the vector of
extrinsic information A°, and otherwise ignoring the presence of ECC. The vector A is
used by the equalizer as a priori information on the transmitted symbols; it feeds back
information from the decoder to the equalizer, allowing the equalizer to benefit from the
code structure. Normally, the equalizer in a turbo equalization scheme is implemented
with the BCJR algorithm.

In chapter 5, we proposed the SFE, an equalizer that computes an estimate of LLR of
the transmitted symbols, based on the received samples r and the vector of extrinsic
information A°. Thus, the SFE is well-suited for application in turbo equalization. In this

chapter, we study this application of the SFE.

—» EQ.

|| ECC
DECODER
d
L

Tt

apriori

)\eT

Fig. 25. Turbo equalizer.
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6.1 An SFE-Based Turbo Equalizer

An SFE-basedurboequalizelis obtainedby usingthe SFE,depictedn Fig. 20, asthe
equalizerin the turbo equalizationschemedepictedin Fig. 25. The resulting systemis
depictedin Fig. 26. Note that the SFE coeficients dependon the quality of the a priori
information.However, in aturboequalizerthe quality of thea priori informationchanges
with iteration. Therefore the SFE coeficients have to be computedat the beginning of
every turboiteration.In this section,we briefly describeour implementatiorof the SFE-
based turbo equalizer

First, the computationof the SFE coeficientsin a turbo equalizationcontext may be
simplified. In the derivation of the SFE,we proposedo computethe parametey, using
the iterative proceduredescribedn equationg72) and(73). If we usedthis stratgy in a
turbo equalizeyr we would have to repeatthe iterative procedurefor every turboiteration.
However, we have obseredthatthereis no needto this. In fact,the iterative proceduren

equations(72) and (73) may be usedonly in the first turbo iterations.In later turbo

. ECC
< ()‘ T DECODER|™ sl

‘_ S—

Fig. 26. An SFE-based turbo equalizer
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iterations, we may compute the equalizer coefficients using the value y, from the previous
turbo iteration. An updated value of vy, is then computed and passed on to the next turbo
iteration. We have observed that no performance loss isincurred if the iterative procedure
in equations (72) and (73) isused only in the first turbo iteration.

Also, at the first turbo iteration when y, =0, we get E; =0y =0. To avoid the
indeterminate o;/E; in (52) —(54), we artificialy set E;=1, a; =0 for the initial
iteration. Thisis reasonable since, at the first iteration, we do not want to perform any IC
based on the a priori probabilities. In fact, algorithms based solely on IC often have a
problem at the first turbo iteration, when no a priori information is available. For example,
to solve this problem, [31] proposes that the BCJR agorithm be used for the first iteration.
Note that if we are using the approximate SFE coefficients in (74)-(76) theratioa,/E; is
never computed, so thereisno need to artificially set E; = 1, a; = 0 for theinitial iteration.

Finally, we have observed that a turbo equalizer may benefit from values of y, and y,
more pessimistic than those obtained using (70) and (71). Optimistic values for y, and y,
may cause the equalizer to output values of A, that have the wrong sign but a large
magnitude, which may cause the turbo equalizer to converge slowly or to a wrong
codeword. Performance can be improved if y, and y, are estimated using the SEM scalar
channel estimator analyzed in section 3.2, repeated here for convenience. If z, = Aay, + v,
is the equalizer output, then, given initia estimates A, and c‘rg, Y, IS computed iteratively

using
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1—-L-1 ~ ~2
Al =sz _ Otanh(Ai_lzk/o-i_l)zk’

A 1<L-1y4 . 2
ciz zzkzouA,«mgn(zk)—zk ,
, ~2
0 =24 (78)
0;

wheretheindex i > 0 refersto theturboiteration.If we replacez;, by )\’,'; in the equations
above, we obtainanestimatefor y,. Theinitial valuesA, andag requiredto compute?ff)
are obtainedfrom the iterative proceduredescribedin equations(72) and (73). For
computing ?g) we set 62 = 2A0, which reflectsour initial approximationthat )\’,'; IS

consistentlyGaussianA consistentlyGaussianrandomvariableis a Gaussianrandom

variable whose ariance is equal to twice its mean.

6.2 Simulation Results

We presensimulationresultsof turboequalizerdasedn severaldifferentsoft-output
equalizersln all the simulations,the transmittedsymbolsare encodeda recursve rate-
1/2 corvolutional encoderwith parity generator(1+ D?)/(1 + D + D?) followed by an
interleaver whose length is equalto the block length. For thesesimulations,we also
assume that the channel parameters arekno

We begin by usingthe samesimulationscenarioas[35], in which K = 2> message
bits are encodedand transmittedthrough the channelkh = [0.227, 0.46, 0.688, 0.46,
0.227], whosefrequeng responseés shavn in Fig. 27. TheequalizersiseM; = 9, My = 5,

andthe SNR permessageit is E;/N, = (E/R)/(202), whereo? is the noisevariance R is
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Fig. 27. Frequency response of h =[0.227, 0.46, 0.688, 0.46, 0.227].

the code rate (in this case 1/2) and E, = ||h||2 is the symbol energy at the channel output.
We have estimated the BER performance as afunction of E,/N,, of turbo equalizers based
on the BCJR algorithm, the SFE, the time-varying equalizer (TVE) from [35], and the
switched equalizer (SE) from [35], after 14 iterations of the turbo equalizer. We have also
estimated the BER performance of the code in an AWGN channel, which does not
introduce 1Sl. The results, shown in Fig. 28, are averaged over 100 trials. As we can see,
the proposed equalizer performs almost as well as the TVE (quadratic complexity), while
its complexity is comparable to that of the SE (linear complexity).

In Fig. 28, it is aso interesting to see that the performance of al the equalizers
eventually approaches that of the coded system in an AWGN channel. Thus, turbo
equalization allows for aimost perfect ISl removal. In other words, for large enough SNR,
turbo systems may operate asif the channel introduced no ISl. Furthermore, in Fig. 28 we

show the capacity limit, defined as the minimum Ej,/N, required for error-free
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Fig. 28. BER performance for the simulation scenario of [35].

transmissionusing rate 1/2 codesand BPSK transmissionas predictedby Shannors
theory [46]. This limit was computedusing the techniquesproposedin [47]. For the
channelconsideredn this simulation,the capacitylimit is E; /N, = 3.06 dB. As seenin
Fig. 28, the gap betweenthe turbo-basedsystemsand the capacity is not wide.
Furthermore, the BCJR-basedsystem behaes like an AWGN system for E,/
Ny > 3.70 dB, suggestinghat the code,ratherthanthe ISI channel,is responsibleor a
significant part of thisap. In fct, the gp can be made nawer if better codes are used.
As seenin Fig. 28, the BCJR equalizeryields the best performanceamongall the
equalizersThereis, therefore atrade-of betweertheaddedcompleity of theBCJRand
its performancegain. To quantify this trade-of, in Fig.29 we shov the number of
operationgadditionsandmultiplications)requiredby the BCJR-andthe SFE-basedurbo
equalizerso achieve a BER of 1072 at a given E;/N,. In this figure, we do not take the

decodingcompleity into accountsincethisis commonto all equalizersFurthermorewe

70



3,000

1,000

Complexity

100

60
4 5 6 7 8 9 10 11 12 13 14 15 16

Ey/Ng (dB) for BER = 1073

Fig. 29. Complexity-performance trade-off.

do not consider other complicating factors of the BCJIR algorithm, such as the significant
memory requirements and the constant use of lookup table to compute exponentials and
logarithms. Even without taking these factors into account, we see in Fig. 29 that the
BCJR-based turbo equalizer requires 1.8 times as many operations as the SFE-based turbo
equalizer to achieve a BER of 1073 at E;/N, = 7 dB. Likewise, if we are limited to 300
operations, the SFE-based system can operate at an E;/N, 2.7 dB less than that made
possible by the BCIR-based system.

The performance gap between the different techniques is a strong function of the
channel. To see this, we simulate the transmission of N = 2! encoded bits through & =
[0.23, 0.42, 0.52, 0.52, 0.42, 0.23], whose frequency response is shown in Fig. 30. Thisis
the 6-tap channel that causes maximum performance degradation for the ML sequence

detector when compared to the matched filter bound [48]. We used M = 15 and M, = 10.
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Fig. 30. Freguency response of h=[0.23, 0.42, 0.52, 0.52, 0.42, 0.23].

For each value of E;, /N, and every 30 codewords, we checked the total number of words
detected in error. If this number was greater than 100, we would stop running the
simulation for that value of E; /N,. A maximum of 1000 codewords was transmitted for
each E;, /N,,.

The performance of the turbo equalizers based on BCJR, DAE, SE and the SFE for the
simulation scenario described above is shown in Fig. 31, where we plot the BER versus
E, /N, for the turbo equalizers. The maximum number of iterations shown for each
scheme is that after which the equalizers stopped improving. It isinteresting to notice that,
for the DAE, error propagation is a problem for E;, /N, < 10 dB, as evidenced by its poor
performance in this SNR range. After this value, the performance improves rapidly with
increasing Ej/Ng. It is important to point out that the first turbo iteration for this
algorithm uses a BCJR equalizer, which precludes its application to channels with long

memory. We can also see in Fig. 31 that the SFE is around 2.6 dB better than the SE
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Fig. 31. BER performance of someturbo equalizersfor h=[0.23, 0.42, 0.52, 0.52,
0.42, 0.23]. The BPSK capacity limit for this scenario is E,/Ng = 4.2 dB.
equalizer for the same number of iterations and a BER of 102 . However, performance
cannot be further improved with the SE equalizer. On the other hand, with the SFE a gain
of 0.65 dB is possible with 2 extra iterations, and a 1.4 dB gain is possible with 10 more
iterations. One possible explanation for this performance gap isthat, asseen in Fig. 30, the
channel used in this simulation introduces severe ISl. For such channels, decision
feedback structures such as the proposed algorithm tend to perform better than linear
filters.

The BPSK capacity limit for the ssmulation scenario used to generate Fig. 31,
computed using the techniques proposed in [47], iS Ey/N, = 4.2 dB. Therefore, the gap to
capacity for this particular channel islarger than the gap in Fig. 28, thusindicating that the
gap to capacity depends on the channel characteristics. It should be mentioned that the
turbo systems considered in Fig. 31 do approach the performance of an 1SI-free system;

however, this happens at alow BER, for which we have no results.
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The channels we have considered so far have a fairly short impulse response. Using a
BCJR equalizer for these channels is a feasible option, and there is a trade-off between
some extra computational burden and some performance gain. However, in channels with
very long impulse responses the complexity of the BCJR equalizer is prohibitive, and
using this equalizer is no longer an option. To obtain the gains of turbo equalization in
channels with long impulse responses, low-complexity equalizers have to be used.
Consider, for instance, the microwave channel of [49]. For this example, we focus on the
44-tap section of this channel, corresponding to samples 98 through 141. Furthermore,
since we are using a BPSK modulation, we use only the real part of the channel. The
resulting impulse response is shown in Fig. 32, and the frequency response is shown in
Fig. 33. For such along channel, the complexity of BCJR is roughly 247 additions and

multiplications per symbol per iteration, and even quadratic-complexity equalizers such as
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Fig. 32. Impulse response of microwave channel of [49].
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Fig. 33. Frequency response of microwave channel of [49].

the TVE are too complex. In cases like this, linear complexity equalizers are the only
feasible choice. Therefore, to use a turbo equalizer for this channel, we need to use either
the SFE or the SE.

To determine the performance of the SFE- and SE-based turbo equalizers for the
microwave channel, we simulate the transmission of N = 211 encoded bits through this
channel. We used equalizers with M = 40 and M5 = 20. A maximum of 1000 codewords
was transmitted for each E, /N,,. For each value of E; /N, and every 30 codewords, we
checked the total number of words detected in error. If this number was greater than 100,
we would stop running the simulation for that value of E,/N,. In Fig. 34, we plot
performance of the turbo equalizers based on the SE and the SFE, in terms of BER versus
E,/Ny. In this figure, the gains of turbo equalization are clear, as evidenced by the
performance gap between the first and 8-th iteration of both turbo equalizers. We can also
see that the SFE-based turbo equalizer outperforms the SE-based turbo equalizer, with a

gap of 1.5dB for a BER of 103 . The capacity limit for the microwave channel is also

75



100

L

101

%

BER

1073

Capacity

10* | (Water-pouring)
8 it.
105 I I i I
0 1 2 3 4 5 6 7 8 9
Ey/No (dB)

Fig. 34. BER performance of the SFE- and SE-based turbo equalizers for the
microwave channel.

shown in Fig. 34. However, since the complexity of the technique proposed in [47] grows
exponentially with channel memory, computing the BPSK capacity is not feasible for this
channel. Therefore, we show the power-constrained capacity, computed using water-
pouring [46]. As we can see, the SFE-based system has a gap to capacity of around 3 dB,

which can be made narrower if better codes are used.

6.3 The EXIT Chart

In this section, we describe the extrinsic information transfer (EXIT) chart, a design
tool for iterative systems such as turbo equalizers. We also compare the EXIT charts of
different equalizers.

The EXIT charts were originally proposed in [45] for the analysis of parallel-
concatenated turbo codes, but they can also be used for turbo equalization. The idea

behind these charts is that the equalizer or the decoder in an iterative detector can be seen
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as a block that maps extrinsic information at its input, A;,,, to extrinsic information at its
output, A,,;. Furthermore, A;, can be characterized by a single parameter, the mutual

information between A;,, and the transmitted symbols, I;,,. For abinary alphabet, we get

Iin=7% Pin(Aa)log 2P le) (79)
in am{ﬂ}f in 2p;, (A1) +p;, (A1)

where p;, (A la) is the pdf of A, given that a was transmitted. The mutual information
between A,,; and the input sequence, 1,,,;, may be similarly defined. Therefore, decoders
and equalizers in an iterative receiver may be seen as functions 7, and 7'y, respectively,
that map I;,, toI,,,,, asdepicted in Fig. 35 for aturbo equalizer. The EXIT chart isaplot of

T, and/or T,.

For the equalizer, the mapping from I;,, to I, is estimated for a specific channel and a
specific SNR. We assume that A;,, is generated from an AWGN channel whose noise
component is independent of the channel noise and the transmitted symbols, as was done
in (62). Under this assumption, A;, can be generated directly, without regard for the
decoder. To compute I,,,,;, & long sequence of channel outputs and a priori information is
generated, and the equalizer is used to produce a sequence of values A,,,. The pdfs

PoudA11) and p,,.(A 1) are then estimated based on histograms of the equalizer output,

out= tin
T Ty

e

- d
Equalizer I, = I,,  Decoder f

<

Fig. 35. View of turbo equalization as an iterative application of mappings.
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andl,,, is obtainedrom anumericalcomputatiorof theintegralin (79). Themappingfor
the decoderis estimatedn a similar fashion.The only differenceis thatfor the decoder
there is no channel output, onlytensic information.

The EXIT chart can be usedto graphically predict the behaior of the iterative
algorithm.To seethis, considerFig. 36, wherewe plot the EXIT charts(I?, , asafunction
of I ) for the BCJR equalizey the SFE and the SE. The chartswere obtainedfor the
channelgivenby k = [0.227, 0.46, 0.688, 0.46, 0.2271, andfor anE} /N, = 5.1 dB, using
107 transmittedsymbols.We alsoshav I¢, (which is equalto I¢,,) asa function of I% ,
(which is equalto I)) for the recursve rated1/2 corvolutional encoderwith parity
generato(1+ D?)/(1 + D + D?). NotethatI¢, = T 2 ). Thus,the plot for the decoder

canbeobtainedoy switchingtheabscissandthe ordinatein thedecodeEXIT chart.The

iteratve procedurefor the BCJR equalizeris representecby the arrawvs in Fig. 36.

—+— BCJR
—=— SFE

0.2 —— Decoder | ]
—o— SE
0 ] 1 ] ]
0 0.2 0.4 0.6 0.8 1
I‘ign_ out

Fig. 36. The EXIT charts for the BCJR equaliztite SFE and the SEB{/Ng =

5.1dB andfor h =[0.227,0.46,0.688,0.46,0.227].Theflippeddecoder
chart is also shen.
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Initially, the equalizer has no extrinsic information, so that I7, = 0, so it produces an output

with I¢

out

= T,(0), represented by the first vertical arrow. The decoder then produces an
output with I, = T4(I7, ,), avalue that can be found graphically through the first horizontal
arrow. (Remember that for the decoder we plot I, = T (I%,).) With this new value of I,

the equalizer produces a new value I, = T,(I7,), found with the second vertical arrow.

ou
The iterative procedure progresses in the same fashion in future iterations.

As seen in Fig. 36, for both the BCJR equalizer and the SFE the mutual information
tends to a large value (close to 1) as the iterations progress, which implies a small BER
[45]. For the SE, however, the mutual information stops increasing at a small value, which
impliesalarge BER. Furthermore, we see that the BCJIR-based turbo equalizer is expected
to converge in 5 iterations, while the SFE-based turbo equalizer is expected to convergein
6 iterations. Finally, we see in Fig. 36 that for no extrinsic information (I7, = 0) the SFE

produces the same IY , as the SE. However, when I = 0 the SE chooses the MM SE-LE.

out
These two observations indicate that the SFE performs like an MMSE-LE. This is
intuitively pleasing, since in the absence of a priori information and with unreliable
equalizer outputs (caused by the low SNR), the SFE should indeed be similar to an
MMSE-LE. We can aso seein Fig. 36 that, as the reliability of the extrinsic information

increases, the SFE, the SE and the BCJR equalizer produce the same ¢, .. Thisagrees with

out
the analysis in section5.2.3 that showed that when the reliability of the extrinsic
information tends to infinity, the SFE tends to an MF with IC, which isthe ML receiver in

this case. (Remember that the SE isan MF when the a priori information isreliable.)
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The EXIT chart may be used to determine the threshold SNR for a turbo equalizer,
defined as the SNR above which the turbo equalizer converges to a small BER, and below
which the turbo equalizer does not converge to a small BER. From the iterative procedure
described above, it is clear that the turbo equalizer will converge to a small BER if the
EXIT chart for the equalizer only intersects the inverted decoder chart at a high value of
the mutual information. As seen in Fig. 36, the plots for the SE and the decoder intersect at
asmall value of I, , yielding alarge BER. However, if we increase the SNR, the curve for
the SE will move up, so that the curves only intersect at a high mutual information,
resulting in a small BER. Thus, the value of SNR that makes the EXIT chart for the
equalizer touch that of the decoder at a single point for a small mutual information is the
SNR threshold for that equalizer. Using this procedure, we determine the threshold for the
BCJR equalizer, the SFE and the SE. The resulting thresholds for the channel k = [0.227,
0.46, 0.688, 0.46, 0.227] are shown in Table 2.

The EXIT chart has another interesting application, stemming from the fact that they
may be generated for the equalizer and decoder independently. This allows for different
combinations of coding and equalization techniques to be compared directly, without the
need to simulate a turbo equalizer for each combination. This property of EXIT charts

makes it useful for designing codes for turbo equalization [50].

Table 2: Threshold SNR for Some Equalizers

Equalizer type | SNR Threshold (dB)

BCJR 3.4
SFE 4.5
SE 5.3
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6.4 Summary

In this chapter, we studied the application of the SFE for turbo equalization. We first
proposed some modifications to the computation of the SFE coefficients that reduce the
computational complexity of the system and improve its performance. We then showed,
through simulations, that an SFE-based turbo equalizer may perform within 1 dB of a
BCJR-based turbo equalizer, which has exponential complexity in the memory of the
channel, and within 0.4 dB of a TVE-based turbo equalizer, which has quadratic
complexity in the memory of the channel. We showed that the SFE-based turbo equalizer
consistently outperforms turbo equalizers based on other linear complexity equalizers.

We have also discussed EXIT charts, a tool for the design of iterative systems. We
have provided the EXIT charts of the SFE and compared them with the charts for the
BCJR equalizer and the SE. As expected, the SFE is seen to perform between the SE and

the BCJR equalizer.
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CHAPTER 7

ECC-Aware Blind Channel Estimation

Aswe have discussed so far, the principle behind the success of iterative techniquesis
that of exchanging information between blocks so that at every iteration each block uses
information from other blocks to improve the reiability of its output. Within that
philosophy, in this chapter we combine turbo equalizers and iterative channel estimatorsin
a single system in which channel estimation is based on the decoder output instead of the
equalizer output. This way the channel estimator benefits from the code structure, which
makes the decoder output more reliable than that of the equalizer, resulting in a blind
iterative ECC-aware channel estimator. In a way, this is not very different from the EW
channel estimator of chapter 4, since the combination of an equalizer and a decoder can be

seen as a symbol estimator.

7.1 ECC-Aware Blind Estimation of a Scalar Channel

In this section, we explain the idea behind ECC-aware channel estimation in ssimple
terms, by considering a scalar channel as shown in Fig. 37. Given initial estimates A , and
63 , the ECC-ignorant approach to estimating the channel gain A and the noise variance a2

computes:
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. N-1 A
A, = J%Zk o Tk tanh(Airk/Giz), (80)

.2 1 ~N-1 . -
1= N,y |7y, —sign(ry,) A; , 112 (81)

The ideabehind these equationsisthat 2 A ;r;/ 6? isan estimate of the LLR of the channel
input a;, which is equal to 24r, / o2 if only the channel is taken into account. We may,
however, obtain a better estimate for this LLR by taking the code into account. This can be

done by considering the output of the BCJIR decoder. In this case, we may estimate

~

N-1
Aiy1= %300 rytanhOy/2), (82)

~2 1 -N-1 . A
i 1= Ny, o lr), —sign(\,) A;, 112 (83)

7.2 ECC-Aware Blind Estimation of an ISI Channel

In this section, we propose an ECC-aware blind channel estimator for a genera
channel. The application of the principle discussed in the previous section to a channel
that introduces ISl is not straightforward. After all, when discussing turbo equalization,
we saw that it is hard to obtain the APP on the transmitted symbols while taking the code
structure into account. However, we also saw that turbo equalizers may produce an

approximation to this APP. In fact, one important aspect of turbo equalizers is that they

A (+)—=|BCIRF—= 1,

to BPSK

p
L P(D)
Channel Decoder

ECC ENCODER Gain
Fig. 37. A simple encoded scalar channel.
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provide soft estimates of the transmitted sequence that benefit from the ECC code
structure, and are much more reliable than the estimates provided by an equalizer alone.
Its seems natural that using this information for channel estimation should provide better
results than using ECC-ignorant symbol estimates, asis done in Fig. 5. Thus, we propose
the channel estimator of Fig. 38, in which the symbol estimator in Fig. 5 isreplaced by the
turbo equalizer of Fig. 3.

The proposed estimator of Fig. 38 iterates between three blocks: a channel estimator, a
soft-output equalizer, and a soft-output ECC decoder. A receiver would have to perform
these functions anyway, so their presence aone does not imply any added complexity; the
only added complexity is due to the fact that these functions are performed multiple times
asthe algorithm iterates.

It is instructive to compare the proposed estimator with a conventional receiver that
performs channel estimation just once, then uses these estimates in a turbo equalizer. The

proposed estimator can be derived from this receiver by making just one modification:

r
>l EQ.
> apriori
~ e‘
h,G )\k
e
<+J+‘_
Channel 1
> Estimator
A
ECC
DECODER
d ~
L T a
k TT (€ > —>

Turbo Equalizer
(Symbol Estimator)

Fig. 38. Integrating channel estimation with turbo equalization.
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rather than using the initial channel estimates for every turbo iteration, the proposed
receiver occasionally improves the channel estimates based on tentative soft decisions.
Specifically, every J-th iteration of the turbo equalizer, the soft-symbol estimates
produced by the ECC decoder are used by the EW algorithm to produce better channel
estimates, which are then used for the next ¢/ iterations. Key to the good performanceisthe
fact that the a priori information for the turbo equalizer is not initialized to zero after J
iterations of the turbo equalizer. Instead, extrinsic information from the last instance is
used as the initial a priori information in the next one. The choice of / is a design
parameter that can affect convergence speed, steady-state behavior, and overall
complexity. Because of the low complexity of the channel estimator relative to the
complexity of the equalizer and ECC decoder, we have found empirically that J =1 isa
reasonable choice. With this choice, each time the ECC decoder passes extrinsic
information to the equalizer, the channel estimates are simultaneously improved. Thisis
only marginaly more complex than a conventional receiver that uses turbo equalization,
but the performance improvement that results can be significant.

One complicating factor for ECC-aware blind channel estimatorsis the presence of the
interleaver. Asis well-known [7], the output of a blind equalizer, or of an equalizer based
on a blind estimator, is a delayed version of the channel input, and this delay cannot be
compensated for blindly. However, if a delayed sequence is fed to the deinterleaver in
Fig. 38, the decoder input will be practically independent of the encoder output. In this
case, the decoder output will also be practically independent of the channel input, so that
the channel estimates are almost zero. Thus, if a delay is present the blind ECC-aware

channel estimator fails. As seen in chapter 4, the EW agorithm exploits the knowledge of
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the channel memory to estimate this delay. In this chapter, we assume that the channel
memory is known, so the delay problem is not considered. This memory has to be
estimated in practice. If this estimate is not accurate, the delay will have to be estimated

using some nonblind technique.

7.3 Simulation Results

In this section, we present simulation results of a system with 1SI. We compare the
performance of the blind ECC-aware system to one with channel knowledge. We also
compare the performance of the ECC-aware and ECC-ignorant estimators.

We begin by comparing the performance of the blind scheme to a turbo equalization
scheme with channel knowledge. The channel is given by A = [1 0.9 0.8], and the BCJR
algorithm is used to provide estimates of the LLR of the channel input a. The generator
polynomia for the channel encoder is P(D) = (1 + D?)/ (1 + D + D?). The channel and
noise variance estimates are initialized to what we call an impulsive initialization:
63 = 1/(2N)Z:7:_01|rk|2 and kg = [y, O, ... 0]. Thisinitializes the channel to asingle-
tap gain, and initidizes the noiseto an initial SNR of 0 dB, while keeping the values of &
and 6, consistent with the received energy. Fig. 39 shows the BER versus E, / N, for the
blind scheme and for aturbo equalizer with channel knowledge. The results are an average
of the transmission of 320 blocks of 2048 message bits each. The advantages of ECC-
aware channel estimation are clear. We can see that the large gap between the blind and

non-blind schemes at one iteration is reduced to virtually nothing at seven iterations.
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Fig. 39. Comparison between ECC-aware blind channel estimation and channel
knowledge in turbo equalization.

It is also worthwhile to compare the performance of the ECC-aware and the ECC-
ignorant channel estimates. To that end, we run the same experiment as before. However,
for the ECC-ignorant estimator, the channel is estimated with the equalizer output, and no
ECC decoding is performed. In Fig. 40, we plot the estimation error versus E,/N,, for both
these estimators, where the solid lines represent the errors after nine iterations and the
dotted lines represent the errors for previous iterations. We can see that the ECC-aware

estimator yields again of about 4 dB when compared to the ECC-ignorant estimator.
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Fig. 40. Comparison between ECQvare and ECC-ignorant blind channel
estimation.

7.4 Study of Convergence

To studythe corvergenceof the ECC-avare channelestimator andto compareit to
the ECC-ignorantestimatoy we will use both thesealgorithmsto estimaterandomly
generatedchannels.We declarea channelto be successfullyestimatedif the turbo
equalizetbasedntheseestimatesorrectlydetectghetransmitteccodevord, without any
errors.

By defininga successfuthannelestimateasthatwhich yieldsno errors,anattemptto
estimatea channelmay fail not becauseof an intrinsic corvergenceproblemwith the
estimationalgorithm,but ratherbecaus@f miscorvergenceof theturboequalizerin fact,
it is known thatthereare“bad” sequence®r aturbosystemwhich causemary detection

errors.For example,in the transmissiorof say1,000informationbits with a BER of 103
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usingturbodetectionpneis notto expectonebit erroratevery block, but ratheroneblock
with around200 bit errorsevery 200 blocks. In otherwords,someof the failuresin the
randomchannelexperimentare due to these“bad” channeloutputs,not to an inherent
convergenceproblemwith theblind channekestimatorin thatsenseywe mustcomparehe
success of the blind algorithm with the success of the algorithm with chanméékge.

We basedour analysison the randomchannelexperiment,in which a set of 400
informationbits weregeneratecindencodedusinga rate 1/4 serially concatenateturbo
code consisting of two recursve systematic corvolutional codes with generator
polynomial P(D) = (1 + D)/ (1 + D + D?), andan interleaver betweenthe encodersThe
resulting encodedsequencewas then interleaved and transmittedthrough a 5-tap 1SI
channel. We have conducted 1,000 such experiments, in which the channel, the
transmittedand noise sequencesand the interleavers were generatedrandomly The
channelcoeficients in particularare generatedaccordingto 2 ~ A(0,I). The signal to
noiseratio waskeptconstaniat E,/N, = 2 dB. The noisevarianceand channelestimates
were initialized with an impulge initialization.

For the ECC-ignorant case, we obviously cannot expect that the WER after
equalizationbe zero.However, we may usethe estimategrovided by the ECC-ignorant
estimatolin aturboequalizatiorsetting.In this casethechannekstimatesarenotupdated
astheturboequalizerterates We maythenconsideran ECC-ignoranthannelestimateo
be successfuif the turbo equalizerasedon this estimateproduceseroerrors.Thus,the
succesof the ECC-ignorantestimatorwas measuredy running a turbo equalizerthat
usesECC-ignoranestimateswhich wereobtainedafter 30 iterationsof the ECC-ignorant

channelestimator In Fig. 41 we plot the word-errorrate (WER) versus iterationfor the
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Fig. 41. Word-error rate (WER) across different channels.

ECC-aware and ECC-ignorant blind schemes, and for a turbo equalizer with channel
knowledge, henceforth referred to ssmply as turbo equalizer. We say that the algorithm
produced a word-error at a given iteration if its output did not coincide with the
transmitted codeword. This plot highlights the dramatic need for ECC-aware channel
estimation. We see that the ECC-ignorant estimates are very poor, and that the code is not
able to compensate for this estimation error, yielding a high WER. This plot aso shows
the fact that the WER of the blind scheme is not 0% not only because the blind channel
estimator may fail, but also because the turbo detection may fail. In fact, the turbo
equalizer presents a WER of 3.5%, when compared to a WER of 8.6% for the blind
scheme. What is even more interesting is that the blind scheme does not fail whenever the
turbo equalizer fails. Even though this is true for 34 out of the 35 channels in which the
turbo equalizer fails, for one run of this experiment the blind scheme was able to correctly

detect the transmitted codeword while the turbo equalizer was not.
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7.5 Initialization

One obvious issue that arises from the considerations in the previous section is that of
initialization. One may wonder whether some failures of the blind algorithm could have
been avoided if the channel estimates were initialized to a value closer to the actual
channel than the impulsiveinitialization. Another possible advantage of good initialization
is faster convergence, hence lower complexity. As seen in Fig. 41, the blind scheme may
take longer to converge than the turbo equalizer with channel knowledge. Thus there is
room for improving speed of convergence, and this may conceivably be achieved with a
smart initialization.

In this section, we explore the use of the cumulant matrix subspace (CMS) algorithm
[51] toinitialize the ECC-aware blind estimator. This algorithm belongs to a class of blind
channel estimators that exploits the higher-order statistics (HOS) of the received signal to
provide a generally simple and closed form channel estimate. These algorithms are
generally used to initialize other HOS blind agorithms that provide better channel
estimates, but are more complex and more prone to misconvergence, requiring good
initialization. Given the intended use of CMS, it seems natural to use this agorithm to
initialize iterative channel estimators.

Before studying the impact of aCMSinitialization in ECC-aware estimation, we again
show more evidence of the benefits of exploiting the code structure for channel estimation.
We do that with the same experiment used in generating Fig. 40, i.e., 320 blocks of 2048
bits each are encoded with a rate 1/2 recursive systematic convolutional code with
generator polynomial P(D) = (1 + D?) /(1 + D + D?), interleaved and transmitted through

achannel givenby A =[1 0.9 0.8]. The BCJR algorithm is used to provide estimates of the
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LLR of the channel input a. This time, the channel and noise variance estimates are
initialized with estimates provided by the CMS agorithm. In Fig. 42 we show the
estimation error of the CM S agorithm and of the ECC-aware estimator after 9 iterations
(solid lines), as well as for the iterations in-between (dotted lines). It is clear that using
ECC-aware estimation after the CMS algorithm greatly improves the estimates, with a
significant gain of 7 dB of E, /N, for estimation errors of 20 dB .

To study the impact of CMS initialization on the convergence of the ECC-aware
estimator, we repeat the random channel experiment used to generate Fig. 41, in which in
which a set of 400 information bits were encoded using a rate 1/4 serial concatenated
turbo code consisting of two recursive systematic convolutional codes with generator
polynomia P(D) = (1 + D)/ (1 + D + D?), and transmitted through a channel generated
according to A ~ A(0,I), with an E,/N, of 2 dB. We test three different initiaization

strategies, the impulsive initialization, initialization with CMS and a third strategy that

|7 - R|? @B)
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Fig. 42. Comparison between CM S and ECC-aware blind channel estimates.
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consistsof initializing the equalizeroutputto sign(r), i.e,, we make decisionson the
transmittedcodevord ignoring noise and ISI. In other words, at the first iteration the
channelis estimatedwith sign(ry,) replacingtanhB%ﬁE. The resulting WER for these
initialization stratgies is shavn in Fig.43. As we can see, even though the CMS
algorithmcancertainlyhelp the corvergenceof the ECC-avareestimatorat high SNR, it
is not very helpful at low SNR. This happensbecauseCMS operatesin the uncoded
domain,soin our exampleit “sees’anSNRof 4 dB. In otherwords,in theregionwhere

the ECC-avareestimatolis mostuseful,thelow SNRregion, CMS is not ableto produce

reliable channel estimates.

T T T T
—==— CMS
—— |Ignoring ISI
—+H— Impulsive

WER

0.1 |

0.08 1 1 1 1

Iteration

Fig. 43. WER for different initialization stragges.
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7.6 Turbo Estimator

In this section, we provide simulation results that show that the SFE and the EW
algorithm may be combined to form the turbo estimator (TE), a linear-complexity ECC-
aware blind channel estimator. In fact, as seen before, using an equalizer for ECC-aware
estimation is not significantly different than using an equalizer for turbo equalization.
Since the SFE can be used for turbo equalization, it should be no surprise that the SFE
may be used for ECC-aware estimation.

To assess the performance of the TE, we simulated the same scenario used in Fig. 28,
i.e., 100 blocks of K = 21® message bits were encoded with arate 1/2 recursive systematic
convolutional code with generator polynomial P(D) = (1+D? /(1 +D +D?. The
resulting codewords was interleaved and transmitted through the channel 2 = [0.227, 0.46,
0.688, 0.46, 0.227]. The SFE used M; =9, M, =5, and the channel estimates were
initialized with the impulsive initialization. The resulting channel estimation errors are
shown in Fig. 44, while the BER performance of this system is shown in Fig. 45. It is
interesting to see that the channel estimation error stops improving at 15 iterations, while
the BER performance continues to improve until the 25-th iteration. Comparing Fig. 28
and Fig. 45, we see that the TE performs as well as the system with channel knowledge,

although the TE converges more slowly.
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Fig. 44. Channel estimation errors for the SFE-based ECC-aware blind channel
estimator.
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Fig. 45. BER performance of the SFE-based ECC-aware blind channel estimator.
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7.7 Summary

In this chapter, we proposed an ECC-aware blind channel estimator, an iterative
channel estimator that benefits from the presence of coding. We provided examples of the
good quality of ECC-aware estimates. For instance, we showed that a turbo equalizer
using ECC-aware estimates may perform almost as well as a turbo equalizer with channel
knowledge. We also compared ECC-aware estimates to ECC-ignorant estimates, and
showed that a gain of as much as 7 dB is possible for an estimation error of -20 dB.
Furthermore, we showed that systems based on ECC-aware estimates may operate at very
low SNR, where ECC-ignorant estimates yield poor performance. Finaly, we proposed
the turbo estimator, a linear-complexity ECC-aware channel estimator based on the EW
algorithm of chapter 4 and the SFE of chapter 5. We showed that the SFE-based ECC-

aware estimator retains al the desirable properties of the BCJIR-based estimator.
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CHAPTER 8

Conclusions

8.1 Summary of Contributions

In this work, we proposed and analyzed linear-complexity techniques for iterative
channel estimation and equalization. Because of the way these techniques are designed,
they may benefit from the presence of ECC, and hence may be used for turbo equalization
and ECC-aware channel estimation.

In chapter 2, the problem of blind channel estimation for a coded system is introduced.
A maximum-likelihood estimator is prohibitively complex, so this problem is normally
divided in three subproblems. channel estimation, equalization and decoding. We
discussed the divide and conquer approach, in which each of these subproblemsis solved
independently. We also discussed turbo equalizers and the EM algorithm. These are
iterative algorithms that provide approximate solutions to otherwise intractable problems:
respectively, joint decoding and equalization for known channels, and joint estimation and
equalization for uncoded systems.

Turbo equalizers and the EM agorithm provide better performance than their non-
iterative counterparts. Combining them into an iterative receiver that provides channel
estimates that benefit from the presence of ECC is amost straightforward. However, these

techniques suffer from complexity and convergence problems. The goal of this thesis was
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to propose a system whose per-symbol computational complexity grows linearly with the
number of coefficients in the system. The proposed system is less prone to
mi sconvergence than systems based on the EM algorithm.

In chapter 3, we proposed the SEM agorithm, a linear complexity channel estimator
[20] that performs amost as well as the EM algorithm, whose channel estimator has
guadratic complexity. More importantly, the SEM is not intrinsically tied to an equalizer,
so further complexity reduction is possible if the BCJIR equalizer in the EM algorithm is
replaced by a lower-complexity equalizer. We presented a detailed analysis of the SEM
algorithm for a scalar channel, and compared the performance of the SEM and the EM
algorithm for channels that introduce 1SI. Simulations established that the performance is
not significantly degraded with the SEM algorithm.

In chapter 4, we studied the convergence issues of the EM algorithm. We showed that
in some cases of misconvergence of the EM algorithm, the resulting channel estimates
may be seen as shifted versions of the actual channel. With this observation in mind, we
developed the EW agorithm, a linear complexity channel estimator with better
convergence properties than the EM algorithm [20].

In chapter 5, we addressed the complexity of the BCJR equalizer, which is used in the
EM algorithm and in turbo equalizers. We discussed techniques that replace the BCIR
equalizer by a linear equalizer and an ISl canceller. The output of the linear equalizer
contains residual 1Sl, which is removed by the ISI canceller using the extrinsic

information at the equalizer output. Most of the techniques proposed in the literature have
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guadratic complexity. Some linear-complexity techniques have also been proposed. We
proposed the SFE, a linear-complexity soft-output equalizer that is suited for iterative
applications [52] and that outperforms existing linear-complexity equalizers.

In chapter 6, we studied the application of the SFE in turbo equalization. We discussed
some issues arising in this application, and we showed that the SFE outperforms other
linear-complexity equalizers in this context. We also discussed EXIT charts, and showed
the charts of various equalizers.

Finaly, in chapter 7, we proposed the turbo estimator (TE), an ECC-aware channel
estimator that uses the fact that the transmitted sequence was encoded to improve blind
and semi-blind channel estimates. These ECC-aware channel estimators may be seen asa
combination of the EM or EW agorithm with aturbo equalizer. Therefore, using the SFE
for equalization we obtain a linear-complexity ECC-aware estimator [17]. We showed that
ECC-aware blind estimates may yield a BER performance similar to that of systems with
channel knowledge. We also showed that ECC-aware blind estimates allow systems to
operate at an SNR so low that other ECC-ignorant blind estimators fail. Because of these
observations, ECC-aware blind estimators may be essential for blind systems to enjoy the

full benefits of turbo equalization.
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8.2 Directions for Future Research

Even though the EW algorithm improves the convergence of the iterative channel
estimator, there is still a nonzero probability that the estimator will not converge to the
correct channel estimates. A better understanding of the reasons for misconvergence is
needed, and a globally convergent blind iterative channel estimator is yet to be
determined.

The performance of iterative schemes is hard to determine, which has motivated the
development of approximate analysis tools such as the EXIT charts. However, most of
these tools are based on simulations. A purely theoretical tool would be of interest.

When comparing the SFE to a DFE, we have observed that sometimes hard feedback
gives better performance than soft feedback, and sometimes the reverse happens. A deeper
investigation of this behavior should be conducted. For instance, one could try to
determine in which cases hard information works better than soft information, and in
which cases the reverse happens.

The techniques proposed in this research were tested on general simulation channels.
It would be interesting to test them in real world applications. One possibility that is
currently under investigation in the Communication Theory Research Group at the
Georgia Institute of Technology is the use of the SFE for equalization in magnetic
recording channels. In magnetic recording systems, the received signal is normally filtered
with a linear equalizer so that the cascade of the channel and the equalizer has a given
impulse response. Normally, this impulse response is short enough that a BCJR equalizer
may be used. However, as the recording density increases, so does the length of the

impulse response of the cascade of the channel and the equalizer. Furthermore, the linear
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equalizer introduces some noise enhancement and does not benefit from turbo
equalization. The system under investigation would replace the linear equalizer and the
BCJR equalizer by a single SFE. It is expected that the SFE-base system may even
outperform the BCJR-based system, since the latter suffers from the noise enhancement
introduced by the linear equalizer.

Finally, it isawell-known fact that blind channel estimators cannot account for delays.
In other words, the sequence at the blind-equalizer output may be a delayed version of the
transmitted sequence. If a delayed sequence is fed to the deinterleaver, the resulting
sequence will be uncorrelated to the decoder output. In this work, this delay issue did not
arise since we assumed the channel length to be known. In practical applications, however,
this assumption is usually false. Therefore, a technique for resolving the delay must be

found.
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APPENDIX A

Computing Hard Scalar-Channel Estimates

Consider a scalar channel, where the received signal is written asr, = A ay, + ng. AS
seen in chapter 3, when hard information is used for estimating the gain and variance of
this channel, we obtain the following asymptotic (as the number of observations tends to

infinity) estimates:

Ajq = E[rksign%ﬁirkg}, 84)

52 =E[

i1+1

~ - 2
ro—Ais 1sign%Lirka } (85)

In this case, it is possible to find closed form formulasfor A and 2. In this appendix, we

derive these formulas. For notational convenience, let A, = A r;,/ o2,

The formulas are particularly simple for 62, and may be expressed in closed form

even if the gain is estimated using soft decisions. In fact, we may write

62 2]

o1 =Ellrp - Aj 41 sign®g)|
~ . ~2 .
=E[lr,121-2A; 1 Elr, sign(\;)] + A; 1 E[sign(\;,)?]

~ ~ ~2
=A2+02_2Ai+lAhard + Ai+1, (A-1)
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where A, is the channel estimate computed with hard information, whose formula we

derivein the sequel. For notational convenience, we drop the iteration index i + 1. Thus,

A porq =Elry, signy)]

= E[E[ry, signQ\) a1l

=

= = E[Elr, sign0\,)lay, = 111 + = E[E[rk sign®;)la, =11 (A-2)

l\’.J

Due to the symmetry of the distributionsinvolved, as well asthe symmetry of the decision
function, both expected values in equation (A-2) are the same, so we may write
A = E[E[r, signQ;)ay, = 111.

= AE[sign(L A + L n})1 + Eln,, sign(L A + L np)]

= AE[sign(A + np)] + Elny, sign(A + np)l, (A-3)
where the last equality follows from the fact that L > 0, so that sign(L x) = sign(x).

Thefirst term in (A-3) can be written as
E[sign(A + nz)] =1 Pr[A + n;, > 0] - 1 Pr[A + n;, < 0]

—1-9 Q[AD (A-4)

Likewise, the second term of equation (A-2) can be written as

1 0 n 2 .\ 1l n2
Elng, sign(A + ng)l= ——( n,expG— [dn n,expd—; [blnk

J2ma)-A Oog20 * J_nof—oo 0 92620
0 A20
ﬁoexp&A—D (A-5)

Thus, we can write
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. 5 0 A20
A=A-2A Q%‘E + J%Gexp EE?E’ (A-6)

concluding our derivation.

Now it iswell known that

Qx) < J%m exp(-x7). (A-7)
Thus, rewriting (A-6) as
. 0 A20
A-A-24|QBO___1 3-—=0|, A-8
%0 JamA/e P8 2070 A9

and applying the bound in (A-8) withx = A / o, we obtain that A > A, so that the channel
gain is aways overestimated.

Also, note that if hard information is used for estimating the noise variance, we obtain
62 =A%+ 02— A° from (A-1). Now note that 62 is the expected value of a positive
number, and hence is itself a positive number. Thus, A2 + o? — A% > 0. Combini ng the
inequalities, we find that

A?+6%> A 2A (A-9)

if A iscomputed with hard information.
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APPENDIX B

Computing the SFE Coefficients

To find the values of f, g, and g, that minimize E[ 1 z;, — a;, 1 2], we rewrite (51) as
2, = %V, (B-1)
wherey;, = [r,'f’ &,rf , a;f 1T andx = [, —g", -¢", 1. Then, the MSE may be written as
Ellz, —ap1% = E[ 1xTy;, —a;12]
=" Ely,y} v — 20 Ely,a] + El1a; 121, (B-2)
From (B-2), it is easy to see that the MM SE solution satisfies
Ely,y: v = Ely,ay, (B-3)
which can be rewritten, using the definition of y, and x, as
Elryry) Elre@y) Elrag)|[ ¢ ] [Elrga,]

Ela,r,] Ela,a,] Ela,a,]||~81| = |Ela,al|- (B-4)
25| |Ela,a,)

S R N |
Ela,r,] Ela,a,] E[a,a,]

Now, assume that Ela,a;] = Ela,a;] = Ela,a;1=0 when k£ #j. This seems
reasonable, since a;, and @, are approximately equal to a;, and the transmitted symbols

are uncorrelated. Furthermore, assume that E[|ak|2] = 1. Using these assumptions and

(61), which states that r, = Ha), + n;, we find that the MM SE coefficients satisfy
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HH +0°1 o H, aH, |[f

hO
a,H; E,I 0 &1l =0l (B-5)
o, HL 0 E, g (%2 L0

whereE; = Ella, 121, E; = E[1a,, 2], a; = Ela,, a;], and ay = E[@, a;]. The vector kg is
the 0-th column of H, where the columns of H are numbered asH = [h_y; , ..., by, .\ ].

Also, Hy =[h_y , ... hylandHy=[hy, .. hy ]
The last two block-rowsin (B-5) yield
g1 =(a,/E)H{f (B-6)
g2 = (ay/Ey) Hyf . (B-7)

Using these values, the first row of (B-5) may be written as

2 2
a a
(HHT+ 021 — E—l HH! - EE H,H. )f=h,, (B-8)
1 2
yielding
C(z (Xz
f=HHT - =~ HH] - 22 HyH; + ®D™ hy, (B-9)
1 2

which completes the derivation of the SFE coefficients.

Finally, assume that z;, = Aay, + v, Where A isagain and vy, an equivalent noise with
variance 03, assumed to be Gaussian and independent of a. In this case, A = Elz,a,].
Using (B-1), this yields A = xTE[y,a;]. However, as seen in (B-5), Elya,l =

[hg‘, 0%, 0T]". Thus, sincex = [f%, g7, -g7, 1", we have that

A =fTh,,. (B-10)
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Furthermore, E[|Zk|2] =A% + 03. However, using (B-1), we may write E[|zk|2] =

xTEly,y’, Ix. Then, using (B-3), we get that E[ |zk|2 1=xTEly,a,l = A. Thus,

o2 =A-A2 (B-11)
U
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