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Continuous Phase Modulation (CPM)

• The CPM bandpass signal is

s(t) = Re
{

Aejφ(t)ej2πfct
}

(1)

= A cos (2πfct + φ(t))

where the “excess phase” is

φ(t) = 2πh
∫ t

0

∞
∑

k=0
xkhf(τ − kT )dτ

– h is the modulation index

– xn ∈ {±1,±3, . . . ,±(M − 1)} are the M -ary data symbols

– hf(t) is the “frequency shaping pulse” of duration LT , that is zero for t < 0 and

t > LT , and normalized to have an area equal to 1/2. Full response CPM has L = 1,

while partial response CPM has L > 1.

• The instantaneous frequency deviation from the carrier is

fdev(t) =
1

2π

dφ(t)

dt
= h

∞
∑

k=0
xkhf(t− kT ) .
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Frequency Shaping Pulses

pulse type hf(t)

L-rectangular (LREC) 1
2LTuLT (t)

L-raised cosine (LRC) 1
2LT

[

1− cos
(

2πt
LT

)]

uLT (t)

L-half sinusoid (LHS) π
4LT sin(πt/LT )uLT (t)

L-triangular (LTR) 1
LT

(

1− |t−LT/2|
LT/2

)
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Excess Phase and Tilted Phase

• During the time interval nT ≤ t ≤ (n + 1)T , the excess phase φ(t) is

φ(t) = 2πh
n
∑

k=0
xkβ(t− kT ).

where the “phase shaping pulse” is

β(t) =



























0 , t < 0
∫ t
0 hf(τ )dτ , 0 ≤ t ≤ LT

1/2 , t ≥ LT

• For the case of full response CPM (L = 1), during the time interval nT ≤ t ≤ (n+ 1)T the

excess phase is

φ(t) = πh
n−1
∑

k=0
xk + 2πhxnβ(t− nT )

• During the time interval nT ≤ t ≤ (n + 1)T , the CPM “tilted phase” is

ψ(t) = πh
n−1
∑

k=0
xk + 2πhxnβ(t− nT ) + πh(M − 1)t/T

= φ(t) + πh(M − 1)t/T

• Note that s(t) can be generated by replacing φ(t) with ψ(t) and fc by fc− h(M − 1)/2T in

(1).
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Continuous Phase Frequency Shift Keying (CPFSK)

• Continuous phase frequency shift keying (CPFSK) is a special type of CPM that uses the

full response REC shaping function

hf(t) =
1

2T
uT (t) =

1

2T
(u(t)− u(t− T ))

As a result

β(t) =



























0 , t < 0

t/2T , 0 ≤ t ≤ T

1/2 , t ≥ T

• Since the frequency shaping function is rectangular, the phase shaping pulse contains a linear

ramp and the CPFSK excess phase trajectories are linear.

5



0
21 3 4 5 6

π

π

π

πh

h

h

h

2

3

4

π

π

π

π

h

h

h

h-4

-3

-2

-

-1

+1

t/T

Phase tree of binary CPFSK.

6



Phase-state Diagrams
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Phase-state diagram of CPM with h = 1/4.
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Minimum Shift Keying (MSK)

• MSK is a special case of CPFSK, where the modulation index h = 1
2 is used.

• The phase shaping pulse is

β(t) =



























0 , t < 0

t/2T , 0 ≤ t ≤ T

1/2 , t ≥ T

• The MSK bandpass waveform is

s(t) = A cos



2πfct + +
π

2

n−1
∑

k=0
xk +

t− nT

2T
πxn



 , nT ≤ t ≤ (n + 1)T

• The excess phase on the interval nT ≤ t ≤ (n + 1)T is

φ(t) =
π

2

n−1
∑

k=0
xk +

t− nT

2T
πxn

• The tilted phase on the interval nT ≤ t ≤ (n + 1)T is

ψ(t) = φ(t) +
πt

2T

• Combining the above two equations, we have

ψ((n + 1)T ) = ψ(nT ) +
π

2
(1 + xn)
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Excess Phase and Tilted Phase for Minimum Shift
Keying (MSK)

• Example: MSK (h=1/2)
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Phase state diagram for MSK signals.
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Linearized Representation of MSK

• An interesting representation for MSK waveforms can be obtained by using Laurent’s de-

composition to express the MSK complex envelope in the quadrature form

s̃(t) = A
∑

n
b(t− 2nT,xn) ,

where

b(t,xn) = x̂2n+1ha(t− T ) + jx̂2nha(t)

and where xn = (x̂2n+1, x̂2n),

x̂2n = x̂2n−1x2n (2)

x̂2n+1 = −x̂2nx2n+1 (3)

x̂−1 = 1 (4)

and

ha(t) = sin





πt

2T



 u2T (t) .

• The sequences, {x̂2n} and {x̂2n+1}, are independent binary symbol sequences taking on

elements from the set {−1,+1}.
• The symbols x̂2n and x̂2n+1 are transmitted on the quadrature branches with a half-sinusoid

(HS) amplitude shaping pulse of duration 2T seconds and an offset of T seconds.
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Gaussian MSK (GMSK)

g(t)
h(t)

FM
Modulator

s(t)x(t)

Gaussian Pre-modulation filtered MSK (GMSK).

• With MSK the modulating signal is

x(t) =
1

2T

∞
∑

n=−∞
xnuT (t− nT )

• The bandwidth of s̃(t) depends on the bandwidth of x(t) and the modulation index h. For

GMSK h = 1/2.

• We filter x(t) with a low-pass filter to remove high frequency content prior to modulation,

i.e., we use the filtered pulse g(t) = x(t) ∗ h(t).
• For GMSK, the low-pass filter transfer function is

H(f) = exp











−




f

B





2 ln 2

2











where B is the 3 dB filter bandwidth.

Gaussian Pre-modulation filtered MSK (GMSK).
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• A rectangular pulse rect(t/T ) = uT (t + T/2) transmitted through this Gaussian low-pass

filter yields the GMSK frequency shaping pulse

hf(t) =
1

2T

√

√

√

√

√

2π

ln 2
(BT )

∫ t/T+1/2

t/T−1/2
exp











−2π2(BT )2x2

ln 2











dx

=
1

2T





Q







t/T − 1/2

σ





−Q







t/T + 1/2

σ













where

Q(α) =
∫ ∞
α

1√
2π
e−x

2/2dx

σ2 =
ln 2

4π2(BT )2
.

• The total pulse area is
∫∞
−∞ hf(t)dt = 1/2 and, therefore, the total contribution to the excess

phase for each data symbol is ±π/2 radians.
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GMSK frequency shaping pulse for various normalized filter bandwidths BT .
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• The GMSK phase shaping pulse is

β(t) =
∫ t

−∞ hf(t)dt =
1

2



G





t

T
+

1

2



−G





t

T
− 1

2









where

G(x) = x Φ
(x

σ

)

+
σ√
2π
e
− x2

2σ2 ,

and

Φ(α) =
∫ α

−∞
1√
2π
e−x

2/2dx

• Observe that β(∞) = 1/2 and, therefore, the total contribution to the excess phase for each

data symbol remains at ±π/2 as mentioned earlier.
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GMSK phase shaping pulse for various normalized filter bandwidths BT .
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• The excess phase change over the interval from −T/2 to T/2 is

φ(T/2)− φ(−T/2) = x0β0(T ) +
∞
∑

n=−∞
n 6=0

xnβn(T )

where

βn(T ) =
∫ T/2−nT
−T/2−nT hf(ν) dν .

and

hf(t) =
1

2T





Q







t/T − 1/2

σ





−Q







t/T + 1/2

σ













• The first term, x0β0(T ) is the desired term, and the second term,
∑∞

n=−∞
n 6=0

xnβn(T ), is the

intersymbol interference (ISI) introduced by the Gaussian low-pass filter.

• Conclusion: GMSK trades off power efficiency (due to the induced ISI) for a greatly

improved bandwdith efficiency.

– the loss in power efficiency can be recovered by using an equalizer in the receiver to

mitigate the induced ISI.
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Linearized Gaussian Minimum Shift Keying
(LGMSK)

• Laurent showed that any binary partial response CPM signal can be represented exactly as a

linear combination of 2L−1 partial-response pulse amplitude modulated (PAM) signals, viz.,

s̃(t) =
∞
∑

n=0

2L−1−1
∑

p=0
ejπhαn,pcp(t− nT ),

where

cp(t) = c(t)
L−1
∏

n=1
c (t + (n + Lεn,p)T ) ,

αn,p =
n
∑

m=0
xm −

L−1
∑

m=1
xn−mεm,p,

and εn,p ∈ {0, 1} are the coefficients of the binary representation of the index p, i.e.,

p = ε0,p + 2ε1,p + · · · + 2L−2εL−2,p .

• The basic signal pulse c(t) is

c(t) =



























sin(2πhβ(t))
sin πh

, 0 ≤ t < LT
sin(πh−2πhβ(t−LT ))

sin πh
, LT ≤ t < 2LT

0 , otherwise

,

where β(t) is the CPM phase shaping function.
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Linearized Gaussian Minimum Shift Keying
(LGMSK)

• Note that the GMSK frequency shaping pulse spans L = 3 to L = 4 symbol periods for

practical values of BT .

• Often the pulse c0(t) contains most of the signal energy, so the p = 0 term in can provide

a good approximation to the CPM signal. Numerical analysis can show that the pulse c0(t)

contains 99.83% of the energy and, therefore, we can derive a linearized GMSK waveform by

using only c0(t) and neglecting the other pulses.

• This yields the waveform

s̃(t) =
∞
∑

n=0
ejπhαn,oc0(t− nT ),

where, with L = 4,

c0(t) =
3
∏

n=0
c (t + nT ) ,

αn,0 =
n
∑

m=0
xm

• Since the GMSK phase shaping pulse is non-causal, when evaluating c(t) we use the truncated

and time shifted GMSK phase shaping pulse

β̂(t) = β(t− 2T )

with L = 4 as shown previously.
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Linearized Gaussian Minimum Shift Keying
(LGMSK)

• For h = 1/2 used in GMSK,

an,0 = ej
π
2
αn,0 ∈ {±1,±j} ,

and it follows that

s̃(t) = A
∑

n

(

x̂2n+1c0(t− 2nT − T ) + jx̂2nc0(t− 2nT )
)

where

x̂2n = x̂2n−1x2n

x̂2n+1 = −x̂2nx2n+1

x̂−1 = 1

• This is the same as the OQPSK representation for MSK except that the half-sinusoid ampli-

tude pulse shaping function is replaced with the LGMSK amplitude pulse shaping function.

• Note that the LGMSK pulse has length of approximately 3T to 4T , while the pulses on

the quadrature branches are transmitted every 2T seconds. Therefore, the LGMSK pulse

introduces ISI, but this can be corrected with an equalizer in the receiver.
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POWER SPECTRUM OF BANDPASS SIGNALS

• A bandpass modulated signal can be written in the form

s(t) = ℜ
{

s̃(t)ej(2πfct)
}

=
1

2

{

s̃(t)ej(2πfct) + s̃∗(t)e−j(2πfct)
}

• The autocorrelation of a bandpass modulated signal is

φss(τ ) = E [s(t)s(t + τ )]

=
1

4
E
[(

s̃(t)ej2πfct + s̃∗(t)e−j2πfct
)

×
(

s̃(t + τ )ej(2πfct+2πfcτ) + s̃∗(t + τ )e−j(2πfct+2πfcτ)
)]

=
1

4
E
[

s̃(t)s̃(t + τ )ej(4πfct+2πfcτ) + s̃(t)s̃∗(t + τ )e−j2πfcτ

+ s̃∗(t)s̃(t + τ )ej2πfcτ + s̃∗(t)s̃∗(t + τ )e−j(4πfct+2πfcτ)
]

=
1

4

[

E[s̃(t)s̃(t + τ )]ej(4πfct+2πfcτ) + E[s̃(t)s̃∗(t + τ )]e−j2πfcτ

+E[s̃∗(t)s̃(t + τ )]ej2πfcτ + E[s̃∗(t)s̃∗(t + τ )]e−j(4πfct+2πfcτ)
]

.
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• If s(t) is a wide-sense stationary random process, then the exponential terms that involve t

must vanish, i.e., E[s̃(t)s̃(t + τ )] = 0 and E[s̃∗(t)s̃∗(t + τ )] = 0.

• Substituting s̃(t) = s̃I(t) + js̃Q(t) into the above expectations gives the result

φs̃IßI(τ ) = E[s̃I(t)s̃I(t + τ )] = E[s̃Q(t)s̃Q(t + τ )] = φs̃Qs̃Q(τ )

φs̃I s̃Q(τ ) = E[s̃I(t)s̃Q(t + τ )] = −E[s̃Q(t)s̃I(t + τ )] = −φs̃Qs̃I (τ )

• Using these results, the autocorrelation is

φss(τ ) =
1

2
φs̃s̃(τ )e

j2πfcτ +
1

2
φ∗s̃s̃(τ )e

−j2πfcτ

where

φs̃s̃(τ ) =
1

2
E[s̃∗(t)s̃(t + τ )]

• The power density spectrum is the Fourier transform of φss(τ ):

Sss(f) =
1

2
[Ss̃s̃(f − fc) + S∗

s̃s̃(−f − fc)]

– Ss̃s̃(f) is the power density spectrum of the complex envelope s̃(t), which is always real-

valued but not necessarily even about f = 0.

Sss(f) =
1

2
[Ss̃s̃(f − fc) + Ss̃s̃(−f − fc)]
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POWER SPECTRAL DENSITY OF A COMPLEX
ENVELOPE

• In general, the complex lowpass signal is of the form

s̃(t) = A
∑

k
b(t− kT,xk)

• The autocorrelation of s̃(t) is

φs̃s̃(t, t + τ ) =
1

2
E [s̃∗(t)s̃(t + τ )]

=
A2

2

∑

i

∑

k
E [b∗(t− iT,xi)b(t+ τ − kT,xk)] .

Observe that s̃(t) is a cyclostationary random process, meaning that the autocorrelation

function φs̃s̃(t, t + τ ) is periodic in t with period T . To see this property, first note that

φs̃s̃(t + T, t + T + τ )

=
A2

2

∑

i

∑

k
E [b∗(t + T − iT,xi)b(t + T + τ − kT,xk)]

=
A2

2

∑

i′

∑

k′
E [b∗(t− i′T,xi′+1)b(t + τ − k′T,xk′+1)] .
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• Under the assumption that the information sequence is a stationary random process it follows

that

φs̃s̃(t + T, t + T + τ ) =
A2

2

∑

i′

∑

k′
E [b∗(t− i′T,xi′)b(t + τ − k′T,xk′)]

= φs̃s̃(t, t + τ ) . (5)

where data blocks xi′+1 and xk′+1 are replaced by xi′ and xk′, respectively. Therefore s̃(t) is

cyclostationary.
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• Since s̃(t) is cyclostationary, the autocorrelation φs̃s̃(τ ) can be obtained by taking the time

average of φs̃s̃(t, t + τ ), given by

φs̃s̃(τ ) = < φs̃s̃(t, t + τ ) >

=
A2

2

∑

i

∑

k

1

T

∫ T

0
E [b∗(t− iT,xi)b(t + τ − kT,xk)] dt

=
A2

2T

∑

i

∑

k

∫ −iT+T
−iT E [b∗(z,xi)b(z + τ − (k − i)T,xk)] dz

=
A2

2T

∑

i

∑

m

∫ −iT+T
−iT E [b∗(z,xi)b(z + τ −mT,xm+i)] dz

=
A2

2T

∑

i

∑

m

∫ −iT+T
−iT E [b∗(z,x0)b(z + τ −mT,xm)] dz

=
A2

2T

∑

m

∫ ∞
−∞ E [b∗(z,x0)b(z + τ −mT,xm)] dz ,

where 〈 · 〉 denotes time averaging and the second last equality used the stationary property

of the data sequence {xk}.
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• The psd of s̃(t) is obtained by taking the Fourier transform of φs̃s̃(τ ),

Ss̃s̃(f) = E







A2

2T

∑

m

∫ ∞
−∞

∫ ∞
−∞ b∗(z,x0)b(z + τ −mT,xm)dze

−j2πfτdτ







= E







A2

2T

∑

m

∫ ∞
−∞ b∗(z,x0)e

j2πfzdz

×
∫ ∞
−∞ b(z + τ −mT,xm)e

−j2πf(z+τ−mT )dτe−j2πfmT
]

= E







A2

2T

∑

m

∫ ∞
−∞ b∗(z,x0)e

−j2πfzdz
∫ ∞
−∞ b(τ ′,xm)e

−j2πfτ ′dτ ′e−j2πfmT






=
A2

2T

∑

m
E [B∗(f,x0)B(f,xm)] e

−j2πfmT ,

where B(f,xm) is the Fourier transform of b(t,xm).

• Finally,

Ss̃s̃(f) =
A2

T

∑

m
Sb,m(f)e

−j2πfmT

where

Sb,m(f) =
1

2
E [B∗(f,x0)B(f,xm)]
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• Suppose that xm and x0 are uncorrelated for |m| ≥ K.

• Then

Sb,m(f) = Sb,K(f), |m| ≥ K

where

Sb,K(f) =
1

2
E [B∗(f,x0)] E [B(f,xm)] |m| ≥ K

=
1

2
E [B∗(f,x0)] E [B(f,x0)] |m| ≥ K

=
1

2
|E [B(f,x0)]|2 , |m| ≥ K .

• It follows that

Ss̃s̃(f) = Scs̃s̃(f) + Sds̃s̃(f)

where

Scs̃s̃(f) =
A2

T

∑

|m|<K
(Sb,m(f)− Sb,K(f)) e

−j2πfmT

Sds̃s̃(f) =





A

T





2

Sb,K(f)
∑

n
δ
(

f − n

T

)

• Note that the spectrum consists of discrete and continuous parts. The discrete portion has

spectral lines spaced at 1/T Hz apart.
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ZERO MEAN SIGNALS

• If s̃(t) has zero mean, i.e., E[b(t,x0)] = 0, then E[B(f,x0)] = 0.

• Under this condition

Sb,K(f) =
1

2
|E[B(f,x0)]|2 = 0

• Hence, Ss̃s̃(f) has no discrete component and

Ss̃s̃(f) =







A2

T







∑

|m|<K
Sb,m(f)e

−j2πfmT
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UNCORRELATED SOURCE SYMBOLS

• With uncorrelated source symbols the information symbols xm,k constituting data blocks

xm = (xm,1, xm,2, . . . , xm,N) are mutually uncorrelated. Under this condition xm and x0 are

obviously uncorrelated for |m| ≥ 1.

• Hence, Sb,m(f) = Sb,1(f), for |m| ≥ 1, where

Sb,0(f) =
1

2
E
[

|B(f,x0)|2
]

Sb,1(f) =
1

2
|E [B(f,x0)]|2

• Hence

Sds̃s̃(f) =
A2

T 2
Sb,1(f)

∑

n
δ(f − n/T )

Scs̃s̃(f) =
A2

T
(Sb,0(f)− Sb,1(f))

• If s̃(t) has zero mean as well, then

Ss̃s̃(f) =
A2

T
Sb,0(f)
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LINEAR FULL RESPONSE MODULATION

• Here it is assumed that

b(t,xk) = xkha(t)

B(f,xk) = xkHa(f) ,

where the xk may be correlated.

• Using the above leads to

Sb,m(f) =
1

2
E [B∗(f,x0)B(f,xm)]

=
1

2
E [x∗0H

∗
a(f))xmHa(f))]

=
1

2
E
[

x∗0xm |Ha(f)|2
]

=
1

2
E [x∗0xm] |Ha(f)|2

= φxx(m) |Ha(f)|2

where

φxx(m) =
1

2
E[x∗kxk+m]
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• The psd of the complex envelope is

Ss̃s̃(f) =
A2

T

∑

m
Sb,m(f)e

−j2πfmT

=
A2

T
|Ha(f)|2

∑

m
φxx(m)e−j2πfmT

=
A2

T
|Ha(f)|2 Sxx(f)

where

Sxx(f) =
∑

m
φxx(m)e−j2πfmT

• With uncorrelated source symbols

Sb,0(f) = σ2x |Ha(f)|2

Sb,m(f) =
1

2
|µx|2 |Ha(f)|2 , |m| ≥ 1 .

where σ2x =
1
2E[|xk|2], µx = E[xk].

• If µx = 0, then Sb,1(f) = 0 and

Ss̃s̃(f) =
A2

T
σ2x |Ha(f)|2
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POWER SPECTRAL DENSITY OF ASK
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Psd of ASK with a truncated square root raised cosine pulse with various truncation

lengths; β = 0.5.
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OFDM Power Spectrum

• The data symbols xn,k, k = 0, . . . , N − 1 that modulate the N sub-carriers are assumed to

have zero mean, variance σ2x =
1
2
E[|xn,k|2], and they are mutually uncorrelated.

• In this case, the psd of the OFDM waveform is

Ss̃s̃(f) =
A2

Tg
Sb,0(f) ,

where

Sb,0(f) =
1

2
E
[

|B(f,x0)|2
]

,

and

B(f,x0) =
N−1
∑

k=0
x0,kT sinc(fT − k) +

N−1
∑

k=0
x0,kαgT sinc(αg(fT − k))ej2πfT .

Using the above along with T = NTs yields the result

Ss̃s̃(f) = σ2xA
2T







1

1 + αg

N−1
∑

k=0
sinc2(NfTs − k)

+
α2
g

1 + αg

N−1
∑

k=0
sinc2(αg(NfTs − k))

+
2αg

1 + αg
cos(2πNfTs)

N−1
∑

k=0
sinc(NfTs − k)sinc(αg(NfTs − k))





 .

• Note that the Nyquist frequency in this case is 1/2T gs = (1 + αg)/2Ts.
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Psd of OFDM with N = 16, αg = 0.25.
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Psd of OFDM with N = 1024, αg = 0.
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OFDM Power Spectrum -IFFT Implementation

• The output of the IDFT baseband modulator is {Xg} = {Xg
n,m}, wherem is the block index

and

Xg
n,m = Xn,(m)N

= A
N−1
∑

k=0
xn,ke

j2πkm
N , m = 0, 1, . . . , N +G− 1

• The power spectrum of the sequence {Xg} can be calculated by first determining the discrete-

time autocorrelation function of the time-domain sequence {Xg} and then taking a discrete-

time Fourier transform of the discrete-time autocorrelation function.

• The psd of the OFDM complex envelope with ideal DACs can be obtained by applying the

resulting power spectrum to an ideal low-pass filter with a cutoff frequency of 1/(2T gs ) Hz.
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Discrete-time Autocorrelation Function

• The time-domain sequence {Xg} is a periodic wide-sense stationary sequence having the

discrete-time autocorrelation function

φXgXg(m, ℓ) =
1

2
E[(Xg

n,m)
∗Xg

n,m+ℓ]

= A2
N−1
∑

k=0

N−1
∑

i=0

1

2
E[x∗n,kxn,i]e

j 2πN (−km+im+iℓ),

for m = 0, . . . , N +G− 1 .

The data symbols, xn,k, are assumed to be mutually uncorrelated with zero mean and variance

σ2x =
1

2
E[|xn,k|2]. Using the fact, that Xg

n,m = Xn,(m)N , it follows that

φXgXg(m, ℓ) =







































m = 0, . . . , G− 1, ℓ = 0, N

Aσ2x m = G, . . . , N − 1, ℓ = 0

m = N, . . . , N +G− 1, ℓ = 0,−N
0 otherwise

.

Averaging over all time indices m in a block gives the time-average discrete-time autocorre-

lation function

φXgXg(ℓ) =



























Aσ2x ℓ = 0
G

N+G
Aσ2x ℓ = −N,N

0 otherwise

.
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Power Spectrum

• Taking the discrete-time Fourier transform of the discrete-time autocorrelation function gives

SXgXg(f) =
∑

m
φXgXg(ℓ)e−j2πfmNT

g
s

= Aσ2x



1 +
G

N +G
e−j2πfNT

g
s +

G

N +G
ej2πfNT

g
s





= Aσ2x



1 +
2G

N +G
cos(2πfNT gs )



 .

• Finally, assume that the sequence {Xg} = {Xg
n,m} is passed through an ideal DACs.

– The ideal DAC is a low-pass filter with cutoff frequency 1/(2T gs ).

• The OFDM complex envelope has the psd

Ss̃s̃(f) = Aσ2x



1 +
2G

N +G
cos(2πfNT gs )



 rect (fT gs ) .
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Psd of IDFT-based OFDM with N = 16, G = 0. Note in this case that T gs = Ts.
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Psd of IDFT-based OFDM with N = 16, G = 4.
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Psd of IDFT-based OFDM with N = 1024, G = 256.
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Power spectral density of binary CPFSK for various modulation indices.
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Psd of binary CPFSK as the modulation index h→ 1.
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