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MIMO Channels

e A multiple-input multiple-output (MIMO) system is one that consists of multiple transmit
and receive antennas.
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MIMO system with multiple transmit and multiple receiver antennas.



MIMO Channels

e For a system consisting of L; transmit and L, receive antennas, the channel can be described
by L; X L, matrix
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— ggp(t, 7) denotes the time-varying sub-channel impulse response between the pth trans-
mitter antenna and gth receiver antenna.

e Suppose that the complex envelopes of the signals transmitted from the L; transmit antennas
are:
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where §,(t) is the signal transmitted from the pth transmit antenna.

o Let
f<t) - (fl(t% 7:2<t)7 R fLr(t»T 3
denote the vector of received complex envelopes, where 7,(t) is the signal received at the gth
receiver antenna. Then

F(t) = [ G(t, 7)3(t — T)dr



MIMO Channels - Special Cases

e Under conditions of flat fading

where 7 is the delay through the channel and
r(t)=G(t)s(t—T) .
e [f the MIMO channel is characterized by slow fading, then

r(t) = /Ot G(7)s(t — 7)dr .

— In this case, the channel matrix G(7) remains constant over the duration of the trans-
mitted waveform s(¢), but can vary from one channel use to the next, where a channel
use may be defined as the transmission of either a single modulated symbol or a vector
of modulated symbols.

— Sometimes this is called a randomly static channel or a block fading channel.

e Finally, if the MIMO channel is characterized by slow flat fading, then
r(t) = Gs(t) .



MIMO Channel Models - Classification

e MIMO channel models can be classified as either physical or analytical models.

e The analytical models characterize the MIMO sub-channel impulse responses in a mathemat-
ical manner without explicitly considering the underlying electromagnetic wave propagation.

— Analytical MIMO channel models are most often used under slowly and flat fading con-
ditions.

— The various analytical models generate the MIMO matrices as realizations of complex
Gaussian random variables having specified means and correlations.

— To model Rician fading, the channel matrix can be divided into a deterministic part and
a random part, i.e.,

where E[G] = /ZSG is the LoS or specular component and /ZZ;Gy. is the scatter
component assumed to have zero-mean.

— To simply our further characterization of the MIMO channel, assume for the time being
that K =0, so that G = G



i.i.d. MIMO Channel Model

e The simplest MIMO model assumes that the entries of the matrix G are independent and
identically distributed (i.i.d) complex Gaussian random variables.
— This model corresponds to the so called "rich scattering” or spatially white environment.

— Such an independence assumption simplifies the performance analysis of various digital
signaling schemes operating on MIMO channels.

— In reality the sub-channels will be correlated and, therefore, the i.i.d. model will lead to
optimistic performance estimates.

— A variety of more sophisticate models have been introduced to account for spatial corre-
lation of the sub-channels.



Correlated MIMO Channel Models

e Consider the vector g = vec{G} where

G = [gbgz, . ,th] y 85 = (91,9',92,9', ce 7gLr,j)T

and
vec{G} = [gi,g5,..., ga]T.

e The vector g is a column vector of length n = L;L,. The vector g is zero-mean complex
Gaussian random vector and its statistics are fully specified by the n X n covariance matrix
R¢ = Elgg!], where g! is the complex conjugate transpose of g.

e Hence, g ~ CN(0,Rg) and, if R is invertible, the probability density function of g is

1
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e Realizations of the MIMO channel with the above distribution can be generated by
G = unvec(g) with g= RgQW :

Here, Rg2 is any matrix square root of Rg, i.e., Rg = R%;/2(Ré/2)H, and w is a length n
vector where w ~ CA(0,T).



Correlated MIMO Channel Models

e To find the square root of the matrix R¢, we can use eigenvalue decomposition.
e Note that the matrix R¢ is Hermitian, i.e., Rg = Rg.

e It follows that R¢ has the eigenvalue decomposition Rg = UAUM, where U is a unitary
matrix, i.e., UUY = 1.

e Then we have Ré/Q — UA!/?2UH
e 'To verify this solution, we note that
R; = UAY*UMUAY2UH
_ UA1/2A1/2UH
= UAU"
e To find the matrix U, we formulate
RGu = \u

and solve for A and u. This can be done by solving the N (assuming matrix R is full rank)
roots of the polynomial

p(A) =det(Rg — AI) =0
e For each solution \;, we have the specific eigenvalue equation which we solve for u

(R — AD)u=0



Kronecker Model

e The Kronecker model assumes that the spatial correlation at the transmitter and receiver is
separable.

e This is equivalent to restricting the correlation matrix Ry to have the Kronecker product
form

Re=Rr®Rp
where
R; = E[G'G] Rp=E[GGY] .
are the L; X Ly and L, X L, transmit and receive correlation matrices respectively, and ® is
the “Kronecker product.”

— For example, the Kronecker product of an n X n matrix A and an m X m matrix B

would be
CL11B s alnB

A®B= aB -+ a,,B

e Under the above Kronecker assumption,
g=(Rr®Rp)'"*w

and
G = R}/*WR}/* |

where W is an L, X L; matrix consisting of i.i.d. zero mean complex Gaussian random
variables.



Kronecker Model

e If the elements of G could be arbitrarily selected, then the correlation functions would be a
function of four sub-channel index parameters, i.e.,

E[gqugﬁ] = ¢(q,p,q,D)
where g, is the channel between the pth transmit and gth receive antenna.
e However, due to the Kronecker property, Rg = Ry ® Rp, the elements of G are structured.
e One implication of the Kronecker property is "spatial” stationarity
E[gqué}a] =o(q—q¢,p—1D) ,

which implies that the sub-channel correlations are determined not by their position in the
matrix G, but by their positional difference.

e In addition, to the stationary property, manipulation of the Kronecker product form in
Rs = Ry ® Ry implies that

Elggpgz5l = ¢(a — G, p — D) = ¢r(q — G) - d7(p — D)

meaning that the correlation can be separated into two parts: a transmitter part and a
receiver part, and both parts are stationary:.

e Finally, it can be shown that the Kronecker property, R = Ry ® Rp, holds if and only if
the above separable property holds.
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Weichselberger Model

e The Weichselberger model overcomes the separable requirement of the channel correlation
functions of the Kronecker model.

e Consider the eigenvalue decomposition of the transmitter and receiver correlation matrices,

Ry = UpA;UR
Rr = UpApUp

— Ap and Ap are diagonal matrices containing the eigenvalues of, and Uy and Ug are
unity matrices containing the eigenvectors of, Ry and Rp.

e The Weichselberger model constructs the matrix G as
G=Up(QoW)U;s ,

where W is an L, X L; matrix consisting of i.i.d. zero mean complex Gaussian random
variables and ® denotes the Schur-Hadamard product (element-wise matrix multiplication),
and €2 is an L, X L; coupling matrix whose non-negative real values determine the average
power coupling between the transmitter and receiver eigenvectors. The matrix € is the
element-wise square root of €2.

e The Kronecker model is a special case of the Weichselberger model obtained with the coupling
matrix © = ApA+, where Az and Ay are column vectors containing the eigenvalues of Ar
and A g, respectively.
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Transmit Diversity - Almouti Scheme

e Transmitter diversity uses multiple transmit antennas to provide the receiver with mul-
tiple uncorrelated replicas of the same signal.

e The complexity of having multiple antenna is placed on the transmitter which may be shared
among many receivers.

e Transmit diversity schemes require three functions:

— encoding and transmission of the information sequence at the transmitter
— combining scheme at the receiver

— decision rule for making decisions

e We consider a simple repetition transmit diversity scheme with maximum likelihood combin-
ing at the receiver. This is the Alamouti transmit diversity scheme.
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e The received complex vectors are
) = 9180) + 928¢2) + Ny
f‘(g) = —g1§>('<2) + g2§2‘1) + fl(g)

r() and T(9) represent the received vectors at time ¢ and ¢ + 7', respectively, and n(;) and

N are the corresponding noise vectors.
e The combiner constructs the following two signal vectors

Vi) = it + 9oty

Vi) = gaT(1) — GiL(y)

Afterwards, the receiver applies the vectors v(;) and v(s) in a sequential fashion to the metric
computer, to make decisions on the symbols S(;) and §(9) by maximizing the two respective

decision variables

pE@m) = Re{Vi) 80mf — Enllo + 1g2]*)
wEeym) = Re{Vi) 8hymt — Bnlloi* + g2l
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e We have

vy = (o1 +a)s) + ging) + ganfy)
Vo = (af +a3)8@) — gily + g>nq)

e Compare with MRC
— With 1 x 2 diversity and MRC
I = giT1 + gl
= (o] + 03)8, + giiy + g3y
— The combined signals in each case are the same. The only difference is the phase rotations
of the noise vectors which will not change the error probability.

— However, with transmit diversity the transmit power must be split between two transmit
antennas. Hence, 2 x 1 diversity is 3 dB less power efficient than 1 x 2 diversity.
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Spatial Multiplexing

e In certain types of wireless systems, particularly those using time division duplexing (TDD),
knowledge of the channel G is available at both the transmitter and receiver. In this case,
as singular value decomposition (SVD) of the channel matrix G may be performed.

e Suppose that the channel matrix G has rank r which is at most min{ Ly, Lg}. Then

G = UAV"?
where U is an Ly X r matrix, V is an Ly X r matrix, and A is an r X r diagonal matrix,
such that the diagonal elements A\, A9, ..., A, are the singular values of the channel matrix
G.

e The matrices U and V are unitary matrices, meaning that UU* = I,., and VV# =1,
where I, is the r X r identity matrix.
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Spatial Multiplexing (cont’d)

e Given knowledge that the channel matrix G has rank r at the transmitter, » symbols are
sent over the channel. The r x 1 transmitted signal vector s is precoded at the transmitter
by using the linear transformation

S, = Vs
and transmitted from the Ly transmit antennas.

e The corresponding received signal vector across the Lg receiver antennas is
r=Gs,+n=GVs+n .

e At the receiver, the received signal vector T is processed by the linear transformation U as
follows:

s = U''r
= U"GVs+U"n
= U"UAV"Vs+U"n
= As+U"n .
e Multiplication of the noise vector n by the unitary matrix U does not alter the statistics
of the noise vector. Due to the multiplication of each transmitted symbol s; by the corre-

sponding singular value A;, the r data streams will have different received bit energy-to-noise
ratios depending on the particular channel realization.
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